Khối chóp có đáy là hình bình hành, một cạnh đáy bằng a và các cạnh bên đều bằng \(a\sqrt 2 \). Thể tích của khối chóp có giá trị lớn nhất là:
A.\[2\sqrt 6 {a^3}\]
B. \[8{a^3}\]
C. \[\frac{{2\sqrt 6 }}{3}{a^3}\]
D. \[\frac{{7{a^3}}}{{12}}\]
Gọi \[O = AC \cap BD\]
Tam giác SAC cân tại S, SO là trung tuyến\[ \Rightarrow SO \bot AC\]
Tam giác SBD cân tại S, SO là trung tuyến \[ \Rightarrow SO \bot BD\]
\[ \Rightarrow SO \bot \left( {ABCD} \right)\]
Vì \[SA = SB = SC = SDSO \bot \left( {ABCD} \right)\] nên O là tâm đường tròn ngoại tiếp ABCD.
Hình bình hành ABCD nội tiếp đường tròn (O) nên ABCD phải là hình chữ nhật.
Theo bài ra ta giả sử AD=a và đặt\[AB = x\,\,\left( {x > 0} \right)\]
Áp dụng định lí Pytago trong tam giác vuông ABC có:
\[AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {x^2}} \]
\[ \Rightarrow AO = \frac{1}{2}AC = \frac{1}{2}\sqrt {{a^2} + {x^2}} \]
Áp dụng định lí Pytago trong tam giác vuông SOA có:
\[SO = \sqrt {S{A^2} - A{O^2}} = \sqrt {2{a^2} - \frac{{{a^2} + {x^2}}}{4}} = \frac{1}{2}\sqrt {7{a^2} - {x^2}} \]
Khi đó ta có
\[{V_{S.ABCD}} = \frac{1}{3}SO.{S_{ABCD}} = \frac{1}{3}.\frac{1}{2}\sqrt {7{a^2} - {x^2}} .ax = \frac{a}{6}x\sqrt {7{a^2} - {x^2}} \]
Áp dụng BĐT Cô-si ta có:\[x\sqrt {7{a^2} - {x^2}} \le \frac{{{x^2} + 7{a^2} - {x^2}}}{2} = \frac{{7{a^2}}}{2}\]
\[ \Rightarrow {V_{S.ABCD}} \le \frac{a}{6}.\frac{{7{a^2}}}{2} = \frac{{7{a^3}}}{{12}}\]
Dấu “=” xảy ra \[ \Leftrightarrow {x^2} = 7{a^2} - {x^2} \Leftrightarrow x = \frac{{a\sqrt {14} }}{2}\]
Vậy thể tích khối chóp S.ABCD đạt giá trị lớn nhất bằng\[\frac{{7{a^3}}}{{12}} \Leftrightarrow x = \frac{{a\sqrt {14} }}{2}\]
Đáp án cần chọn là: D
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a, góc giữa cạnh bên và mặt đáy bằng 600. Tính thể tích khối chóp S.ABC?
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a. Mặt phẳng (SAB) và (SAD) cùng vuông góc với mặt phẳng (ABCD). Đường thẳng SC tạo với đáy góc 450. Gọi M,N lần lượt là trung điểm của AB và AD. Thể tích của khối chóp S.MCDN là:
Đáy của hình chóp S.ABCD là một hình vuông cạnh a. Cạnh bên SA vuông góc với mặt đáy và có độ dài là a. Thể tích khối tứ diện S.BCD bằng:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy (ABCD) và SA=a. Điểm M thuộc cạnh SA sao cho \(\frac{{SM}}{{SA}} = k\). Xác định k sao cho mặt phẳng (BMC) chia khối chóp S.ABCD thành hai phần có thể tích bằng nhau.
Cho tứ diện ABCD có các cạnh AB,AC,AD đôi một vuông góc với nhau, AB=6a,AC=7a,AD=4a. Gọi M,N,P lần lượt là trung điểm của các cạnh BC,CD,DB. Thể tích V của tứ diện AMNP là:
Cho hình chóp S.ABC đáy ABC là tam giác vuông tại A,AB=a,AC=\(a\sqrt 3 \). Tam giác SBC đều nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp S.ABC
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M,N lần lượt là trung điểm của các cạnh AB,BC. Điểm I thuộc đoạn SA. Biết mặt phẳng (MNI) chia khối chóp S.ABCD thành hai phần, phần chứa đỉnh S có thể tích bằng \[\frac{7}{{25}}\] lần phần còn lại. Tính tỉ số \[\frac{{IA}}{{IS}}\]?
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A,BC=2AB=2a. Cạnh bên SC vuông góc với đáy, góc giữa SA và đáy bằng 600. Thể tích khối chóp đó bằng:
Cho hình chóp S.ABCD có đáy ABCD là hình thang, AD song song với BC, AD=2BC. Gọi E, F là hai điểm lần lượt nằm trên các cạnh AB và AD sao cho \[\frac{{3AB}}{{AE}} + \frac{{AD}}{{AF}} = 5\;\] (E,F không trùng với A), Tổng giá trị lớn nhất và giá trị nhỏ nhất của tỉ số thể tích hai khối chóp S.BCDFE và S.ABCD là:
Cho hình chóp S.ABC có đáy ABC vuông tại A và SB vuông góc với đáy. Biết SB=a,SC hợp với (SAB) một góc 300 và (SAC) hợp với đáy (ABC) một góc 600. Thể tích khối chóp là:
Cho hình chóp S.ABC có AB=AC=4,BC=2,SA=\(4\sqrt 3 \), \(\widehat {SAB} = \widehat {SAC} = {30^0}\). Tính thể tích khối chóp S.ABC.
Một khối chóp tam giác có cạnh đáy bằng 6, 8, 10. Một cạnh bên có độ dài bằng 4 và tạo với đáy góc 600. Thể tích của khối chóp đó là:
Cho hình chóp S.ABC, đáy là tam giác ABC có \[AB = BC\sqrt 5 ,\;AC = 2BC\sqrt 2 \], hình chiếu của S lên mặt phẳng (ABC) là trung điểm O của cạnh AC. Khoảng cách từ A đến mặt phẳng (SBC) bằng 2. Mặt phẳng (SBC) hợp với mặt phẳng (ABC) một góc α thay đổi. Biết rằng giá trị nhỏ nhất của thể tích khối chóp S.ABC bằng \(\frac{{\sqrt a }}{b}\), trong đó \[a,b \in {\mathbb{N}^*},\;\]a là số nguyên tố. Tổng a+b bằng:
Cho hình chóp S.ABCD có ABCD là hình thang vuông tại A và D thỏa mãn \[SA \bot \left( {ABCD} \right)\;\] và \[AB = 2AD = 2CD = 2a = \sqrt 2 SA\]. Thể tích khối chóp S.BCD là:
Cho tứ diện ABCD có G là điểm thỏa mãn \[\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \]. Mặt phẳng thay đổi chứa BG và cắt AC,AD lần lượt tại M và N. Giá trị nhỏ nhất của tỉ số \[\frac{{{V_{ABMN}}}}{{{V_{ABCD}}}}\] là