Cho hình vuông ABCD có cạnh bằng aa. Gọi M,N lần lượt là trung điểm của AB và CD. Khi quay hình vuông ABCD quanh MN tạo thành một hình trụ. Gọi (S) là mặt cầu có diện tích bằng diện tích toàn phần của hình trụ, ta có bán kính của mặt cầu (S) là:
A.\[\frac{{a\sqrt 6 }}{3}\]
B. \[\frac{{a\sqrt 6 }}{2}\]
C. \[\frac{{a\sqrt 6 }}{4}\]
D. \[a\sqrt 6 \]
Mặt trụ tạo bởi hình vuông ABCD khi quay quanh MN có chiều cao h = a và bán kính đáy\[r = \frac{a}{2}\]nên có diện tích toàn phần:
\[{S_{tp}} = 2\pi r\left( {r + h} \right) = 2\pi .\frac{a}{2}\left( {\frac{a}{2} + a} \right) = \frac{{3{a^2}\pi }}{2}\]
Mặt cầu (S) có diện tích bằng Stp của mặt trụ thì có bán kính R với:
\[4\pi {R^2} = \frac{{3{a^2}\pi }}{2} \Leftrightarrow R = \frac{{a\sqrt 6 }}{4}\]
Đáp án cần chọn là: C
Trong không gian Oxyz, tập hợp các điểm M(a;b;c) sao cho \[{a^2} + {b^2} \le 2,\,\,\left| c \right| \le 8\] là một khối tròn xoay. Tính thể tích của khối tròn xoay đó?
Cho khối trụ có hai đáy là (O) và (O′). AB,CD lần lượt là hai đường kính của (O) và (O′), góc giữa AB và CD bằng 300, AB = 6 và thể tích khối tứ diện ABCD bằng 30. Thể tích khối trụ đã cho bằng:
Một sợi dây (không co giãn) được quấn đối xứng đúng 10 vòng quanh một ống trụ tròn đều có bán kính \(R = \frac{2}{\pi }cm\) (như hình vẽ).
Biết rằng sợi dây có chiều dài 50 cm. Hãy tính diện tích xung quanh của ống trụ đó.
D.120 cm2
Một khối đồ chơi gồm hai khối trụ (H1),(H2) xếp chồng lên nhau, lần lượt có bán kính đáy và chiều cao tương ứng là r1,h1,r2,h2 thỏa mãn \[{r_2} = \frac{1}{2}{r_1},{h_2} = 2{h_1}\] (tham khảo hình vẽ). Biết rằng thể tích của toàn bộ khối đồ chơi bằng 30cm3 . Tính thể tích khối trụ (H1) bằng:
Một hình trụ có diện tích xung quanh là \[16\pi \], thiết diện qua trục là hình vuông. Một mặt phẳng \[(\alpha )\;\]song song với trục, cắt hình trụ theo thiết diện là ABB′A′, biết một cạnh thiết diện là một dây của đường tròn đáy hình trụ và căng một cung 1200. Chu vi tứ giác ABB′A′ bằng:
Người ta xếp hai quả cầu có cùng bán kính r vào một chiếc hộp hình trụ sao cho các quả cầu đều tiếp xúc với hai đáy, đồng thời hai quả cầu tiếp xúc với nhau và mỗi quả cầu đều tiếp xúc với đường sinh của hình trụ (tham khảo hình vẽ). Biết thể tích khối trụ là 120cm3, thể tích của mỗi khối cầu bằng
Khi quay hình chữ nhật MNPQ quanh đường thẳng AB với A,B lần lượt là trung điểm của MN,PQ ta được một hình trụ có đường kính đáy:
Một đội xây dựng cần hoàn thiện một hệ thống cột tròn của một cửa hàng kinh doanh gồm 17 chiếc. Trước khi hoàn thiện mỗi chiếc cột là một khối bê tông cốt thép hình lăng trụ lục giác đều có cạnh 14cm; sau khi hoàn thiện (bằng cách trát thêm vữa tổng hợp vào xung quanh) mỗi cột là một khối trụ có đường kính đáy bằng30cm. Biết chiều cao của mỗi cột trước và sau khi hoàn thiện là 390cm. Tỉnh lượng vữa hỗn hợp cần dùng (tính theo đơn vị m3, làm tròn đến 1 chữ số thập phân sau dấu phầy). Ta có kết quả:
Cho hai đường thẳng d và \[\Delta \], điều kiện nào sau đây của d và \[\Delta \] thì khi quay d quanh \[\Delta \] ta được một mặt trụ?
Cho hình trụ có bán kính đáy bằng a. Cắt hình trụ bởi một mặt phẳng song song với trục của hình trụ và cách trục của hình trụ một khoảng bằng \(\frac{a}{2}\) ta được thiết diện là một hình vuông. Tính thể tích khối trụ.
Cho hình chữ nhật ABCD, khi quay hình chữ nhật quanh cạnh AD thì CD được gọi là:
Cho hình trụ bán kính đường tròn đáy bằng 1. Hai điểm A và B lần lượt thuộc hai đường tròn đáy sao cho \[AB = \sqrt 6 \], khoảng cách giữa hai đường thẳng AB và trục của hình trụ bằng 12. Thể tích khối trụ được giới hạn bởi hình trụ đó bằng:
Một hình trụ có chiều cao bằng 3, chu vi đáy bằng \[4\pi \]. Thể tích của khối trụ là: