b) nên ; AD= CE do đó . Vậy .
* Nhận xét. Để chứng minh một đoạn thẳng bằng tổng hay một hiệu hai đoạn thẳng ta thường biến đổi đoạn thẳng đó thành hai đoạn cùng nằm trên một đường thẳng và sử dụng cộng, trừ đoạn thẳnCho tam giác ABC có ba góc nhọn. Vẽ đoạn thẳng ; AM=AB sao cho M và C khác phía đối với đường thẳng AB. Vẽ đoạn thẳng và AN=AC sao cho N và B khác phía đối với đường thẳng AC. Gọi I, K lần lượt là trung điểm BN và CM. Chứng minh rằng:
a,
Cho có . Trên nửa mặt phẳng bờ BC chứa điểm A. Vẽ tia Bx vuông góc với BC. Trên tia Bx lấy điểm D sao cho DB=BC. Trên nửa mặt phẳng bờ AB chứa điểm C vẽ tia By vuông góc với BA. Trên tia By lấy điểm E sao cho . Chứng minh rằng:
a,
Cho tam giác ABC có . Kẻ tia phân giác góc cắt AC tại D. Trên cạnh BC lấy điểm M sao cho BM=BA.
a) Chứng minh rằng .
Cho vuông tại A có . Tia phân giác của góc cắt AC tại D.
a) Chứng minh rằng BD=CD.Cho . Gọi D; E theo thứ tự là trung điểm của AB, AC. Trên tia đối của tia ED lấy điểm F sao cho EF=ED. Chứng minh:
a, ,
Cho tam giác ABC có . Các tia phân giác góc B, góc C cắt nhau tại O và cắt AC; AB theo thứ tự D; E. Chứng minh rằng: OD=OE.
Cho tam giác ABC nhọn. Kẻ , . Trên tia đối của tia BD lấy điểm H sao cho . Trên tia đối của tia CE lấy điểm K sao cho . Chứng minh:
a,
Cho tam giác ABC có . Trên tia AB lấy điểm K và D sao cho AK= BM .Vẽ ; .
a) Chứng minh .Cho vuông tại A có AB= AC . Lấy M thuộc . Kẻ BD và CE vuông góc với đường thẳng AM. Chứng minh rằng:
a) .
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của BC. Chứng minh rằng .
Cho tam giác ABC. Từ B kẻ ; . Gọi H là giao điểm của BD và CE. Biết rằng .
Cho tam giác ABC có . Tia phân giác góc B cắt AC ở D. Trên tia đối BD lấy điểm E sao cho BE= AC . Trên tia đối CB lấy điểm K sao cho CK= AB. Chứng minh rằng: .