Gọi Khi đó có giá trị là
A. 34
B. 30,5
C. 325
D. 32,5
Đáp án D
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, tam giác SAB là tam giác đều và nằm trong mặt phẳng vuông góc với mặt đáy. Tính thể tích khối chóp S.ABC
Cho hàm số có đồ thị . Tìm trên (C) có những điểm M sao cho tiếp tuyến của (C) tại M cắt trục tung tại điểm có tung độ bằng 8
Cho hàm số y=f(x) có đạo hàm trên đoạn [a;b]. Ta xét các khẳng định sau:
1) Nếu hàm số f(x) đạt cực đại tại điểm thì là giá trị lớn nhất của f(x) trên đoạn [a;b]
2) Nếu hàm số f(x) đạt cực đại tại điểm thì là giá trị nhỏ nhất của f(x) trên đoạn [a,b]
3) Nếu hàm số f(x) đạt cực đại tại điểm và đạt cực tiểu tại điểm thì ta luôn có
Số khẳng định đúng là?
Từ một miếng tôn có hình dạng là nữa hình tròn có bán kính R= 3, người ta muốn cắt ra một hình chữ nhật (xem hình ) có diện tích lớn nhất. Diện tích lớn nhất có thể của miếng tôn hình chữ nhật là
Cho hình chóp SABCD có đáy ABCD là hình bình hành và có thể tích bằng 1. Trên cạnh SC lấy điểm E sao cho SE=2EC Tính thể tích V của khối tứ diện SEBD
Cho tam giác ABC với trọng tâm G. Gọi A',B',C' lần lượt là trung điểm của các cạnh BC,AC,AB của tam giác ABC. Phép vị tự biến tam giác A'B'C' thành tam giác ABC là
Cho lăng trụ ABC A'B'C có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A’ lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết thể tích của khối lăng trụ là . Tính khoảng cách giữa hai đường thẳng AA' và BC.
Trong mặt phẳng Oxy cho đường thẳng d có phương trình . Viết phương trình đường thẳng d’ là ảnh của d qua phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm tỉ số và phép quay tâm O góc
Tìm tất cả các giá trị của m để giá trị nhỏ nhất của hàm số trên đoạn [1;2] bằng 1
Cho khối chóp SABC có đáy ABC là tam giác cân tại A với biết và mặt hợp với đáy một góc . Tính thể tích khối chóp SABC
Cho hình chóp SABCD đáy ABCD là hình chữ nhật: AB= 2a, AD = a. Hình chiếu của S lên mặt phẳng (ABCD) là trung điểm H của AB;SC tạo với đáy góc . Khoảng cách từ A đến mặt phẳng (SCD) là
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số cắt trục hoành tại bốn điểm phân biệt.