Cho hàm số f(x) thỏa mãn và 2f(12) – f(0) = Tính
A. I = 1.
B. I = 8
C. I = -12
D. I = -8
Chọn đáp án D.
Cho tứ diện S.ABC có các cạnh SA, SB, SC đôi một vuông góc và SA = SB = SC = 1. Tính cosα trong đó α giữa mặt phẳng (SBC) và mặt phẳng (ABC).
Cho tứ diện ABCD có Tính cosin của góc tạo bởi hai đường thẳng AG và CD, trong đó G là trọng tâm tam giác BCD.
Tổng giá trị lớn nhất M và giá trị nhỏ nhất m của hàm số trên đoạn [0;3] có dạng với a là số nguyên và b, c là các số nguyên dương. Tính S = a + b+ c
Cho a,b,c là các số thực dương thỏa mãn Tính giá trị của biểu thức
Cho số phức z = a + bi(a,b ϵ ℝ) thỏa mãn Giá tri nào dưới đây là môđun của z?
Cho khối lăng trụ đứng ABC.A’B’C’ có đáy là tam giác cân ABC với Mặt phẳng (AB’C’) tạo với đáy góc 30 độ Tính thể tích V của khối lăng trụ đã cho.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a Các mặt bên (SAB),(SAC),(SBC) lần lượt tạo với đáy các góc lần lượt 30 độ, 45 độ, 60 độ Tính thể tích V của khối chóp S.ABC biết rằng hình chiếu vuông góc của S trên mặt phẳng (ABC) nằm bên trong tam giác ABC.
Cho hàm số f(x) có đạo hàm liên tục trên đoạn [0;π/4] thỏa mãn và Tích phân bằng
Lập các số tự nhiên có 7 chữ số từ các chữ số 1, 2, 3, 4. Tính xác suất để số lập được thỏa mãn các chữ số 1, 2, 3 có mặt hai lần, chữ số 4 có mặt lần đồng thời các chữ số lẻ đều nằm ở các vị trí lẻ (tính từ trái qua phải).
Cho đường tròn và hai điểm A(1;1) và B(-1;2). Khẳng định nòa dưới đây là đúng?
Cho hàm số với m là tham số. Hỏi hàm số trên có thể có nhiều nhất bao nhiêu điểm cực trị?
Có 3 học sinh lớp A; 5 học sinh lớp B; 7 học sinh lớp C. Chọn ngẫu nhiên 5 học sinh lập thành một đôi. Tính xác suất để tất cả các học sinh A đều được chọn?
Cho hàm số với m là tham số. Gọi S là tập hợp các giá trị nguyên dương của m để hàm số đổng biến trên khoảng (1;e). Tìm số phần tử của S.
khi cắt khối trụ (T) bởi mặt phẳng song song với trục và cách trục của trụ (T) một khoảng bằng ta được thiết diện là hình vuông có diện tích bằng Tính thể tích V của khối trụ (T).