Trong một cuộc thi pha chế, mỗi đội chơi được sử dụng tối đa 24 gam hương liệu, 9 lít nước và 210 gam đường để pha chế nước ngọt loại I và nước ngọt loại II. Để pha chế 1 lít nước ngọt loại I cần 10 gam đường, 1 lít nước và 4 gam hương liệu. Để pha chế 1 lít nước ngọt loại II cần 30 gam đường, 1 lít nước và 1 gam hương liệu. Mỗi lít nước ngọt loại I được 80 điểm thưởng, mỗi lít nước ngọt loại II được 60 điểm thưởng. Hỏi số điểm thưởng cao nhất có thể của mỗi đội trong cuộc thi là bao nhiêu ?
A.540
B.600
C.640
D. 700
Chọn C.
Gọi số lít nước ngọt loại I là x và số lít nước ngọt loại II là y. Khi đó ta có hệ điều kiện về vật liệu ban đầu mà mỗi loại được cung cấp:
Từ một hộp chứa 12 quả cầu, trong đó có 8 quả màu đỏ, 3 quả màu xanh và 1 quả màu vàng, lấy ngẫu nhiên 3 quả. Xác suất để lấy được 3 quả cầu có đúng hai màu bằng :
Trong mặt phẳng Oxy, cho đường tròn (C): . Đường thẳng (d) đi qua M(2;3) cắt (C) tại hai điểm A, B. Tiếp tuyến của đường tròn tại A và cắt nhau tại E. Biết và phương trình đường thẳng (d) có dạng với . Khi đó bằng:
Có bao nhiêu giá trị nguyên của tham số để phương trình có nghiệm?
Cho tam giác ABC với các cạnh AB = c , AC = b, BC = a . Gọi R , r , S lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp và diện tích của tam giác ABC . Trong các phát biểu sau, phát biểu nào sai?
Trong mặt phẳng Oxy , đường thẳng. Vectơ nào sau đây là một vectơ pháp tuyến của đường thẳng ?
Trong mặt phẳng , cho điểm và elip . là 2 điểm thuộc sao cho đều, biết tọa độ của và có tung độ âm. Khi đó bằng:
Cho hàm số có đồ thị (C). Hỏi có bao nhiêu điểm trên đường thẳng sao cho từ đó kẻ được đúng hai tiếp tuyến đến (C)?
Cho hình chữ nhật ABCD có cạnh AB=4 BC=6, M là trung điểm của BC, N là điểm trên cạnh CD sao cho ND = 3NC . Khi đó bán kính của đường tròn ngoại tiếp tam giác AMN bằng
Ba bạn A , B , C mỗi bạn viết ngẫu nhiên một số tự nhiên thuộc đoạn được kí hiệu theo thứ tự là a, b, c rồi lập phương trình bậc hai . Xác suất để phương trình lập được có nghiệm kép là