Phương trình |2x – 5| = 1 có nghiệm là:
A. x = 3; x = 2
B. x = ; x = 2
C. x = 1; x = 2
D. x = 0,5; x = 1,5
Giải phương trình: |2x – 5| = 1
TH1: 2x – 5 ≥ 0 ó x ≥ => |2x – 5| = 2x – 5 = 1 ó 2x = 6 ó x = 3 (tm)
TH2: 2x – 5 < 0 ó x < => |2x – 5| = -2x + 5 = 1 ó 2x = 4 ó x = 2 (tm)
Vậy phương trình có hai nghiệm x = 3 và x = 2
Đáp án cần chọn là: A
Số nguyên lớn nhất thỏa mãn bất phương trình (x – 2)2 – x2 – 8x + 3 ≥ 0 là
Cho các bất phương trình sau, đâu là bất phương trình bậc nhất một ẩn?
Số nguyên nhỏ nhất thỏa mãn bất phương trình x(5x + 1) + 4(x + 3) > 5x2 là
Cho a > b. Bất đẳng thức nào tương đương với bất đẳng thức đã cho?
Tập nghiệm của các bất phương trình x2 + 2(x – 3) – 1 > x(x + 5) + 5 và lần lượt là