Cho tam giác ABC có M, N và P lần lượt là trung điểm AB, AC và BC. Tìm khẳng định sai ?
A. Tứ giác AMNP là hình bình hành
B. MP // AC
C. MN = BC/2
D. Tứ giác MNCP là hình bình hành.
* Ta có M và N lần lượt là trung điểm của AB và AC
Suy ra: MN là đường trung bình của tam giác ABC.
⇒ MN // BC và MN = BC nên C đúng
* Vì M và P lần lượt là trung điểm của AB và BC nên MP là đường trung bình của tam giác ABC.
⇒ MP // AC nên B đúng
* Tứ giác MNCP có cạnh đối song song với nhau nên tứ giác MNCP là hình bình hành.
Nên đáp án D đúng
* Đáp án A sai vì AMNP không phải là tứ giác, phải là AMPN.
Chọn đáp án A
Cho hình bình hành ABCD, gọi E và F là trung điểm của AD và BC. Gọi I là giao điểm của AC và BD. Tìm khẳng định sai?
Cho hình bình hành ABCD, có I là giao điểm của AC và BD. Chọn phương án đúng trong các phương án sau
Cho hình bình hành ABCD có , các góc còn lại của hình bình hành là?