Với a3 + b3 + c3 = 3abc thì
A. a = b = c
B. a + b + c = 1
C. a = b = c hoặc a + b + c = 0
D. a = b = c hoặc a + b + c = 1
Từ đẳng thức đã cho suy ra a3 + b3 + c3 – 3abc = 0
b3 + c3 = (b + c)(b2 + c2 – bc)
= (b + c)[(b + c)2 – 3bc]
= (b + c)3 – 3bc(b + c)
=> a3 + b3 + c3 – 3abc = a3 + (b3 + c3) – 3abc
= a3 + (b + c)3 – 3bc(b + c) – 3abc
= (a + b + c)(a2 – a(b + c) + (b + c)2) – [3bc(b + c) + 3abc]
= (a + b + c)(a2 – a(b + c) + (b + c)2) – 3bc(a + b + c)
= (a + b + c)(a2 – a(b + c) + (b + c)2 – 3bc)
= (a + b + c)(a2 – ab - ac + b2 + 2bc + c2 – 3bc)
= (a + b + c)(a2 + b2 + c2 – ab – ac – bc)
Do đó nếu a3 + (b3 + c3) – 3abc = 0 thì a + b + c = 0 hoặc a2 + b2 + c2 – ab – ac – bc = 0
Mà a2 + b2 + c2 – ab – ac – bc = [(a – b)2 + (a – c)2 + (b – c)2]
Nếu (a – b)2 + (a – c)2 + (b – c)2 = 0 suy ra a = b = c
Vậy a3 + (b3 + c3) = 3abc thì a = b = c hoặc a + b + c = 0
Đáp án cần chọn là: C
Cho x = 10 – y. Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức N = x3 + 3x2y + 3xy2 + y3 + x2 + 2xy + y2
Cho |x| < 2. Khi đó khẳng định nào sau đây là đúng khi nói về giá trị của biểu thức A = x4 + 2x3 – 8x – 16
Tính giá trị của biểu thức A = (x – 1)(x – 2)(x – 3) + (x – 1)(x – 2) + x – 1 tại x = 5
Thu gọn đa thức A = (ax + by + cz)2 + (ay – bx)2 + (az – cx)2 + (bz – cy)2 ta được
Thu gọn đa thức A = (ax + by + cz)2 + (ay – bx)2 + (az – cx)2 + (bz – cy)2 ta được
Tính giá trị của biểu thức B = x6 – 2x4 + x3 + x2 – x khi x3 – x = 6