Chọn câu đúng nhất
A. x2 – 2x – 4y2 – 4y = (x – 2y – 2)(x + 2y)
B. x2 + y2x + x2y + xy – x – y = (x + xy – 1)(x + y)
C. Cả A, B đều đúng
D. Cả A, B đều sai
+) x2 – 2x – 4y2 – 4y = (x2 – 4y2) – (2x + 4y)
= (x – 2y)(x + 2y) – 2(x + 2y)
= (x – 2y – 2)(x + 2y)
+) x2 + y2x + x2y + xy – x – y
= (x2 + xy) + (y2x + x2y) – (x + y)
= x(x + y) + xy(y + x) – (x + y)
= (x + xy – 1)(x + y)
Vậy A, B đều đúng
Đáp án cần chọn là: C
Phân tích đa thức 2x3y – 2xy3 – 4xy2 – 2xy thành nhân tử ta được
Rút gọn biểu thức A = (x2 + 2 – 2x)(x2 + 2 + 2x) – x4 ta được kết quả là
Thực hiện phép tính A = (6x3 – 5x2 + 4x – 1) : (2x2 – x + 1) ta được
Tìm giá trị nhỏ nhất của biểu thức A = x2 + 2y2 – 2xy + 2x – 10y
Tính giá trị của biểu thức P = (-4x3y3 + x3y4) : 2xy2 – xy(2x – xy) cho x = 1, y =
Cho 4x2 – 25 – (2x + 7)(5 – 2x) = (2x – 5)(…).Biểu thức điền vào dấu ba chấm là