Cho hình bình hành ABCD có I là giao điểm của AC và BD. E là một điểm bất kì thuộc BC, qua E kẻ đường thẳng song song với AB và cắt BD, AC, AD tại G, H, F. Chọn kết luận sai?
A. ΔBGE ~ ΔHGI
B. ΔGHI ~ ΔBAI
C. ΔBGE ~ ΔDGF
D. ΔAHF ~ ΔCHE
Đáp án A
Có ABCD là hình bình hành nên: AD // BC, AB // DC
Xét ΔBGE và ΔDGF có:
(đối đỉnh)
(so le trong)
=> ΔBGE ~ ΔDGF (g-g) nên C đúng
Xét ΔAHF và ΔCHE có:
(đối đỉnh)
(so le trong)
=> ΔAHF ~ ΔCHE (g-g) nên D đúng
Lại có GH // AB (đồng vị)
Xét ΔGHI và ΔBAI có
Chung góc I
(cmt)
=> ΔGHI ~ ΔBAI (g-g)
Suy ra B đúng
Chỉ có A sai.
Cho tam giác ABC cân tại A, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho DM là tia phân giác của BDE.
2. Chọn kết luận đúng.
Cho tam giác ABC cân tại A, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho DM là tia phân giác của BDE.
1. Chọn khẳng định đúng.
Cho hình bình hành ABCD, điểm F trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chọn khẳng định sai.
Cho ΔABC cân tại A, có BC = 2a, M là trung điểm BC, lấy D, E thuộc AB, AC sao cho .
1. Tính BD.CE bằng
Cho ΔABC cân tại A, có BC = 2a, M là trung điểm BC, lấy D, E thuộc AB, AC sao cho .
2. Góc BDM bằng với góc nào dưới đây?