Cho hai phương trình 7(x – 1) = 13 + 7x (1) và (x + 2)2 = x2+ 2x + 2(x + 2) (2). Chọn khẳng định đúng
A. Phương trình (1) vô nghiệm, phương trình (2) có nghiệm duy nhất
B. Phương trình (1) vô số nghiệm, phương trình (2) có vô nghiệm
C. Phương trình (1) vô nghiệm, phương trình (2) có vô số nghiệm
D. Cả phương trình (1) và phương trình (2) đều có 1 nghiệm
Ta có
7(x – 1) = 13 + 7x
7x – 7 = 13 + 7x
7x – 7x = 13 + 7
0 = 20 (VL)
Vậy phương trình đã cho vô nghiệm
Lại có:
(x + 2)2 = x2+ 2x + 2(x + 2)
x2 + 4x + 4 = x2 + 2x + 2x + 4
x2 + 4x – x2 – 2x – 2x = 4 – 4
0 = 0
Điều này luôn đúng với mọi x thuộc R
Vậy phương trình đã cho vô số nghiệm
Đáp án cần chọn là: C
Gọi x0 là nghiệm của phương trình 3(x – 2) – 2x(x + 1) = 3 – 2x2. Chọn khẳng định đúng.
Gọi x0 là nghiệm của phương trình 2.(x – 3) + 5x(x – 1) = 5x2. Chọn khẳng định đúng.
Gọi x0 là một nghiệm của phương trình 5x – 12 = 4 - 3x. Hỏi x0 còn là nghiệm của phương trình nào dưới đây?
Giả sử x0 là một số thực thỏa mãn 3 – 5x = -2. Tính giá trị của biểu thức S = ta đươc
Cho hai phương trình 3(x – 1) = -3 + 3x (1) và (2 – x)2 = x2 + 2x – 6(x + 2) (2). Chọn khẳng định đúng
Tính tổng các nghiệm của phương trình |3x + 6| - 2 = 4, biết phương trình có 2 nghiệm phân biệt.