Cho tứ giác ABCD, lấy M, N, P, Q lần lượt là trung điểm của các cạnh AB, BC, CD, DA. Tứ giác ABCD cần có điều kiện gì để MNPQ là hình chữ nhật
A. AB = BC
B. BC = CD
C. AD = CD
D. AC⊥ BD
Nối AC, BD
+ Xét tam giác ABD có M, Q lần lượt là trung điểm của AB; AD nên MQ là đường trung bình của tam giác ABD
Suy ra MQ // BD; MQ = BD (1)
+ Tương tự, xét tam giác CBD có N, P lần lượt là trung điểm của BC; CD nên NP là đường trung bình của tam giác CBD.
Suy ra NP // BD; NP = BD (2)
Từ (1) và (2) => MQ // NP; MQ = NP => MNPQ là hình bình hành (dấu hiệu nhận biết)
+ Để hình bình hành MNPQ là hình chữ nhật thì = 900 hay MQ ⊥ QP
Lại có QP // AC (do QP là đường trung bình của tam giác DAC) nên MQ ⊥ AC mà MQ // BD (cmt) nên AC ⊥ BD
Vậy tứ giác ABCD cần có AC ⊥ BD thì MNPQ là hình chữ nhật.
Đáp án cần chọn là: D
Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 5cm, 12cm là:
Độ dài đường trung tuyến ứng với cạnh huyền của tam giác vuông có các cạnh góc vuông bằng 6cm, 8cm là:
Cho tam giác ABC vuông tại A, AC = 6cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:
Hãy chọn câu đúng. Cho ΔABC với M thuộc cạnh BC. Từ M vẽ ME song song với AB và MF song song với AC. Hãy xác định điều kiện của ΔABC để tứ giác AEMF là hình chữ nhật.
Cho tam giác ABC với ba trung tuyến AI, BD, CE đồng quy tại G. M và N lần lượt là trung điểm của GC và GB. Tứ giác MNED là hình gì?
Cho tam giác ABC vuông tại A, AC = 8cm, điểm M thuộc cạnh BC. Gọi D, E theo thứ tự là các chân đường vuông góc kẻ từ M đến AB, AC. Chu vi của tứ giác ADME bằng:
Cho tam giác ABC với ba trung tuyến AI, BD, CE đồng quy tại G. M và N lần lượt là trung điểm của GC và GB. Để MNED là hình chữ nhật thì tam giác ABC cần có điều kiện:
Cho tam giác ABC, đường cao AH. Gọi I là trung điểm của AC, E là điểm đối xứng với H qua I. Tứ giác AECH là hình gì?