Cho hình bình hành ABCD có DC = 2BC. Gọi E, F là trung điểm của AB, DC. Gọi AF cắt DE tại I, BF cắt CE tại K. Chọn câu đúng nhất.
A. Tứ giác DEBF là hình bình hành.
B. Tứ giác AEFD là hình thoi
C. Tứ giác EBCF là hình vuông
D. Cả A, B đều đúng
Xét hình bình hành ABCD có E, F lần lượt là trung điểm của AB, CD, DC = 2BC nên AE = EB = BC = CF = DF = AD; AB // CD, AD // BC
Xét tứ giác DEBF có
nên DEBF là hình bình hành
Xét tứ giác AEFD có AE = DF; AE // DF nên AEDF là hình bình hành, lại có AE = AD nên hình bình hành AEFD là hình thoi.
Tương tự ta cũng có EBCF là hình thoi. Nhận thấy chưa đủ điều kiện để EBCF là hình vuông.
Nên A, B đúng, C sai.
Đáp án cần chọn là: D
Hình thoi có độ dài hai đường chéo lần lượt bằng 12cm và 16cm. Độ dài cạnh hình thoi đó là:
Độ dài một cạnh hình vuông bằng 5cm. Thì độ dài đường chéo hình vuông đó sẽ là:
Một tam giác đều có độ dài cạnh bằng 14cm. Độ dài một đường trung bình của tam giác đó là:
Một hình thang cân có cạnh bên là 2,5cm; đường trung bình là 3cm. Chu vi của hình thang là:
Hình thang ABCD (AB // CD) có số đo góc D bằng 700, số đo góc A là:
Cho hình bình hành ABCD có DC = 2BC. Gọi E, F là trung điểm của AB, DC. Gọi AF cắt DE tại I, BF cắt CE tại K. Tứ giác EIFK là hình gì?
Cho hình thang ABCD (AB // CD), M là trung điểm của AD, N là trung điểm của BC. Gọi I, K theo thứ tự là giao điểm của MN với BD, AC. Cho biết AB = 6cm, CD = 14cm. Tính độ dài MI, IK.
Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I. Tứ giác AKMB là hình gì?
Cho hình bình hành ABCD có BC = 2AB và = 600. Gọi E, F theo thứ tự là trung điểm của BC và AD. Gọi I là điểm đối xứng với A qua B. Số đo góc AED là:
Cho tam giác ABC cân tại A, trung tuyến AM. Gọi I là trung điểm của AC, K là điểm đối xứng với M qua I. Tứ giác AMCK là hình gì?
Cho hình bình hành ABCD có BC = 2AB và = 600. Gọi E, F theo thứ tự là trung điểm của BC và AD. Gọi I là điểm đối xứng với A qua B. Tứ giác BICD là hình gì?