Xét số thực , biểu thức có 2021 dấu căn thức. Phương trình có bao nhiêu nghiệm thực phân biệt?
A. 1.
B. 2.
C. 3.
D. 0.
Đáp án A
Ta có: .
Khi đó xét phương trình .
Ta có do đó hàm số f(x) đồng biến trên R nên phương trình có nghiệm duy nhất.
Để thực hiện kế hoạch kinh doanh, ông A cần chuẩn bị một số vốn ngay từ bây giờ. Ông có số tiền là 500 triệu đồng gửi tiết kiệm với lãi suất 0,4%/tháng theo hình thức lãi kép. Sau 10 tháng, ông A gửi thêm vào 300 triệu nhưng lãi suất các tháng sau có thay đổi là 0,5% tháng. Hỏi sau 2 năm kể từ lúc gửi số tiền ban đầu, số tiền ông A nhận được cả gốc lẫn lãi là bao nhiêu? (Không tính phần thập phân)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy ABCD, SA=2a. Thể tích khối chóp S.ABCD là
Cho hình chóp S.ABCD có đáy ABCD là hình thoi tâm O, ; hai mặt phẳng (SAC) và (SBD) cùng vuông góc với mặt phẳng (ABCD). Biết khoảng cách từ điểm C đến mặt phẳng (SAB) bằng . Thể tích khối chóp S.ABC bằng
Cho hình chóp S.ABC có , tam giác SAB đều cạnh a và tam giác SAC vuông tại A. Mặt phẳng (SBC) vuông góc với mặt phẳng (ABC). Thể tích khối cầu ngoại tiếp hình chóp SABC là
Cho hàm số có đồ thị cắt đồ thị (C). Gọi d là đường thẳng đi qua điểm A(3;20) và có hệ số góc m. Giá trị của m để đường thẳng d cắt (C) tại ba điểm phân biệt là
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân tại B, BC=2a, SA vuông góc với đáy, SA=a, I thuộc cạnh SB sao cho , J thuộc cạnh BC sao cho JB=JC. Thể tích khối tứ diện ACIJ là
Trong không gian Oxyz, cho hai điểm A(0;2;–2), B(2;2;–4). Giả sử I(a;b;c) là tâm đường tròn ngoại tiếp tam giác OAB. Giá trị biểu thức T=a2+b2+c2 là
Cho n là số nguyên dương thỏa mãn . Hệ số a của x4 trong khai triển của biểu thức là
Trong một hình tứ diện ta tô màu các đỉnh, trung điểm các cạnh, trọng tâm các mặt và trọng tâm tứ diện. Chọn ngẫu nhiên 4 điểm trong số các điểm đã tô màu, xác suất để 4 điểm được chọn có thế tạo thành bốn đỉnh của một tứ diện là
Cho hàm số y = f(x) liên tục trên R và có bảng biến thiên như sau
Có bao nhiêu mệnh đề đúng trong số các mệnh đề sau đối với hàm số g(x)=f(2–x)–2?
I. Hàm số g(x) đồng biến trên khoảng (–4;–2).
II. Hàm số g(x) nghịch biến trên khoảng (0;2).
III. Hàm số g(x) đạt cực tiểu tại điểm –2.
IV. Hàm số g(x) có giá trị cực đại bằng –3.
Cho hàm số y = f(x) liên tục trên [0;2] có đồ thị như hình vẽ. Biết S1, S2 có diện tích lần lượt là 1 và 5. Tích phân bằng