Một vật dao động điều hòa trên quỹ đạo dài 8cm với chu kì T = 2s. Chọn gốc thời gian là lúc vật đi qua vị trí cân bằng theo chiều dương. Phương trình dao động của vật là :
A. \[x = 8\cos \left( {2\pi t - \frac{\pi }{2}} \right)cm\]
B. \[x = 4\cos \left( {\pi t + \frac{\pi }{2}} \right)cm\]
C. \[x = 8\cos \left( {2\pi t + \frac{\pi }{2}} \right)cm\]
D. \[x = 4\cos \left( {\pi t - \frac{\pi }{2}} \right)cm\]
Trả lời:
Ta có: L = 2A = 8cm =>A = 4cm
Tần số góc: \[\omega = \frac{{2\pi }}{T} = \frac{{2\pi }}{2} = \pi rad/s\]
Tại t=0: \[\left\{ {\begin{array}{*{20}{c}}{x = A\cos \varphi = 0}\\{v = - A\omega \sin \varphi >0}\end{array}} \right. \to \left\{ {\begin{array}{*{20}{c}}{\cos \varphi = 0}\\{\sin \varphi < 0}\end{array}} \right.\]
\[ \Rightarrow \varphi = - \frac{\pi }{2}\]
\[ \Rightarrow x = 4\cos \left( {\pi t - \frac{\pi }{2}} \right)\]
Đáp án cần chọn là: D
>Một vật dao động điều hòa với biên độ A = 8cm và ω = πrad/s. Tại thời điểm ban đầu vật qua vị trí có li độ x0= 4cm theo chiều âm. Phương trình dao động của vật là:
Một chất điểm dao động điều hòa với phương trình dạng \[x = \cos \left( {2\pi t + \frac{\pi }{6}} \right)\left( {cm,s} \right)\]. Lấy \[{\pi ^2} = 10\], biểu thức gia tốc tức thời của chất điểm là:
Một vật dao động điều hoà có đồ thị như hình vẽ.
Phương trình dao động của vật là:
Một vật nhỏ dao động điều hòa dọc theo trục Ox với biên độ 5cm, chu kỳ 2s. Tại thời điểm t = 0, vật đi qua vị trí cân bằng theo chiều dương. Phương trình dao động của vật là
Một vật dao động điều hoà dọc theo trục Ox nằm ngang, gốc O và mốc thế năng ở vị trí cân bằng. Thời gian vật đi từ VTCB đến A hết 0,5s và đi hết quãng đường 4cm Chọn t = 0 lúc vật qua vị trí cân bằng theo chiều dương. Phương trình dao động của vật là:
Cho một chất điểm dao động điều hòa với tần số 1Hz, thời điểm đầu vật qua vị trí x = 5cm theo chiều dương với tốc độ v = 10π cm/s. Viết phương trình dao động.
Vật nặng dao động điều hòa với \[\omega = 10\sqrt 5 rad/s\]. Chọn gốc tọa độ trùng với vị trí cân bằng của vật. Biết rằng tại thời điểm ban đầu vật đi qua li độ x = 2cm với vận tốc \[v = 20\sqrt {15} cm/s\]. Phương trình dao động của vật là:
Một chất điểm dao động điều hòa có đồ thị biểu diễn sự phụ thuộc vào thời gian của li độ như hình vẽ. Phương trình dao động của vật là:
Một chất điểm chuyển động tròn đều trong mặt phẳng thẳng đứng, có bán kính quỹ đạo là 8cm, bắt đầu từ vị trí thấp nhất của đường tròn theo chiều ngược chiều kim đồng hồ với tốc độ không đổi là 16πcm/s. Hình chiếu của chất điểm lên trục Ox nằm ngang, đi qua tâm O của đường tròn, nằm trong mặt phẳng quỹ đạo có chiều từ trái qua phải là
Một vật nhỏ dao động theo phương trình x = Acos(ωt + φ)(cm). Tại thời điểm ban đầu, vật đi qua vị trí có li độ x < 0, hướng ra xa vị trí cân bằng. Giá trị của φ thỏa mãn:
Đồ thị vận tốc của một vật cho ở hình bên, phương trình nào dưới đây là phương trình dao động của vật: