Tìm giá trị lớn nhất của biểu thức A = 4x – 2x2 - |x3 – x2| + 7.
Ta có A = 4x – 2x2 – |x3 – x2| + 7
= – 2x2 + 4x – 2 – x2 |x – 1| + 9
= – 2(x2 – 2x + 1) – x2 |x – 1| + 9
= – 2(x – 1) 2 – x2 |x – 1| + 9
Vì (x – 1) 2 ≥ 0 nên – 2(x – 1) 2 ≤ 0.
Dấu “=” xảy ra khi x = 1.
Mặt khác, x2 ≥ 0 và |x – 1| ≥ 0 nên x2 |x – 1| ≥ 0 hay – x2 |x – 1| ≤ 0.
Dấu “=” xảy ra khi x = 1.
Do đó A ≤ 9.
Vậy giá trị lớn nhất của biểu thức A là 9 khi x = 1.
Cho hình chữ nhật ABCD có AB = 12 cm, AD = 9 cm. Gọi H là chân đường vuông góc kẻ từ A đến cạnh BD.
a) Chứng minh tam giác ADH đồng dạng với tam giác DBC và AD2 = HD.BD.
b) Tính độ dài HD và HB.
c) Tia phân giác của góc ADB cắt AH tại E và AB tại F. Chứng minh .
1) Tìm giá trị của m để phương trình 2x – m = 1 – x nhận giá trị x = –1 là nghiệm.
2) Rút gọn biểu thức với x ≠ 1, x ≠ –1 và x ≠ 2.
Giải các phương trình:
a) 7 + 2x = 22 – 3x
b) 2x3 + 6x2 = x2 + 3x
Một tổ sản xuất lập kế hoạch sản xuất một lô hàng, theo đó mỗi giờ phải làm 30 sản phẩm. Khi thực hiện, mỗi giờ tổ chỉ sản xuất được 27 sản phẩm, do đó tổ đã hoàn thành lô hàng chậm hơn so với dự kiến 1 giờ 10 phút. Hỏi số sản phẩm mà tổ sản xuất theo kế hoạch là bao nhiêu?