Cho hàm số f(x) liên tục trên và có một nguyên hàm là hàm số Khi đó bằng:
A.
B.
C.
D.
Phương pháp:
- Tìm f(x) = g'(x) và suy ra hàm
- Tính tích phân, sử dụng bảng nguyên hàm cơ bản
Cách giải:
Vì f(x) liên tục trên và có một nguyên hàm là hàm số
Khi đó ta có
Chọn C.
Xét tất cả các số thực dương a và b thỏa mãn Mệnh đề nào dưới đây đúng?
Chọn ngẫu nhiên hai số khác nhau từ 21 số nguyên dương đầu tiên. Xác suất để chọn được hai số có tích là một số lẻ bằng:
Có bao nhiêu số nguyên a thuộc đoạn [-20; 20] sao cho hàm số có cực đại?
Cho hình chóp S.ABC có SA vuông góc với mặt phẳng (ABC), SA = a, tam giác vuông tại và BC = a (minh họa hình vẽ bên dưới). Góc giữa đường thẳng SC và mặt phẳng (ABC) bằng:
Cho hàm số y = f(x) có bảng biến thiên như hình vẽ sau:
Số nghiệm thực của phương trình là:
Cho các số thực dương a, b khác 1 thỏa mãn và ab = 64. Giá trị của biểu thức bằng:
Trong không gian Oxyz, phương trình mặt cầu (S) có tâm I(-1; 2; 1) và đi qua điểm A(0; 4; -1) là:
Cho hàm số y = f(x) có đồ thị như hình vẽ sau:
Hàm số y = f(x) đồng biến trên khoảng nào dưới đây?