Thứ sáu, 24/01/2025
IMG-LOGO

Câu hỏi:

14/07/2024 117

Xác định m để với mọi x ta có \[ - 1 \le \frac{{{x^2} + 5x + m}}{{2{x^2} - 3x + 2}} < 7\]

A.\[ - \frac{5}{3} \le m < 1\]

Đáp án chính xác

B. \[1 < m \le \frac{5}{3}\]

C. \[m \le - \frac{5}{3}\]

D. m < 1

Trả lời:

verified Giải bởi qa.haylamdo.com

- Vì \[2{x^2} - 3x + 2 >0\,\,\forall x \in \mathbb{R}\]

- Bất phương trình nên: \[ - 1 \le \frac{{{x^2} + 5x + m}}{{2{x^2} - 3x + 2}} < 7\] có tập nghiệm là \[\mathbb{R}\] khi hệ sau có tập nghiệm là \[\mathbb{R}\]:

\(\left\{ {\begin{array}{*{20}{c}}{ - 1(2{x^2} - 3x + 2) \le {x^2} + 5x + m}\\{{x^2} + 5x + m < 7(2{x^2} - 3x + 2)}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{13{x^2} - 26x + 14 - m >0(1)}\\{3{x^2} + 2x + m + 2 \ge 0\,\,\,\,\,\,\,\,\,\,\,\,\,\,(2)}\end{array}} \right.} \right.\)- Ta có (1) có tập nghiệm là \[\mathbb{R}\] khi\[{\rm{\Delta ' < }}0 \Leftrightarrow - 13 + 13m < 0 \Leftrightarrow m < 1\,\,\,\,\,\,\,\,\,\left( 3 \right)\]

- (2) có tập nghiệm là \[\mathbb{R}\] khi\[{\rm{\Delta '}} \le 0 \Leftrightarrow - 5 - 3m \le 0 \Leftrightarrow m \ge - \frac{5}{3}\,\,\,\,\,\,\,\,\,\left( 4 \right)\]

Từ (2) và (4), ta có\[ - \frac{5}{3} \le m < 1\]

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một viên gạch hình vuông có cạnh thay đổi được đặt nội tiếp trong một hình vuông có cạnh bằng 20cm, tạo thành bốn tam giác xung quanh như hình vẽ.

 Một viên gạch hình vuông có cạnh thay đổi được đặt nội tiếp trong một hình vuông có cạnh bằng 20cm, tạo thành bốn tam giác xung quanh như hình vẽ.Tìm tập hợp các giá trị của x để diện tích v (ảnh 1)

Tìm tập hợp các giá trị của x để diện tích viên gạch không vượt quá 208cm2.

 Một viên gạch hình vuông có cạnh thay đổi được đặt nội tiếp trong một hình vuông có cạnh bằng 20cm, tạo thành bốn tam giác xung quanh như hình vẽ.Tìm tập hợp các giá trị của x để diện tích v (ảnh 2)

Xem đáp án » 05/07/2022 241

Câu 2:

Bất phương trình x13x+25<0 có nghiệm là

Xem đáp án » 05/07/2022 229

Câu 3:

Để phương trình: \[\left| {x + 3} \right|(x - 2) + m - 1 = 0\] có đúng một nghiệm, các giá trị của tham số m là:

Xem đáp án » 05/07/2022 218

Câu 4:

Tổng các nghiệm nguyên của bất phương trình \[x\left( {2 - x} \right) \ge x\left( {7 - x} \right) - 6\left( {x - 1} \right)\] trên đoạn \[\left[ { - 10;10} \right]\;\]bằng:

Xem đáp án » 05/07/2022 179

Câu 5:

Bạn An chọn một số nguyên, nhân số đó với 4 rồi trừ đi 30. Lấy kết quả có được nhân với 2 và cuối cùng trừ đi 10 thì được một số có hai chữ số. Số lớn nhất An có thể chọn được có hàng đơn vị bằng:

Xem đáp án » 05/07/2022 175

Câu 6:

Tập nghiệm SS của bất phương trình \[5x - 1 \ge \frac{{2x}}{5} + 3\]là:

Xem đáp án » 05/07/2022 168

Câu 7:

Xác định m để phương trình \[\left( {x - 1} \right)\left[ {{x^2} + 2\left( {m + 3} \right)x + 4m + 12} \right] = 0\] có ba nghiệm phân biệt lớn hơn –1.

Xem đáp án » 05/07/2022 168

Câu 8:

Tổng các nghiệm nguyên của bất phương trình \(\frac{{x - 2}}{{\sqrt {x - 4} }} \le \frac{4}{{\sqrt {x - 4} }}\) bằng:

Xem đáp án » 05/07/2022 165

Câu 9:

Để bất phương trình \[\sqrt {(x + 5)(3 - x)} \le {x^2} + 2x + a\] nghiệm đúng \[\forall x \in [ - 5;3]\]tham số a phải thỏa điều kiện:

\[\sqrt {\left( {x + 5} \right)\left( {3 - x} \right)} \le {x^2} + 2x + a \Leftrightarrow \sqrt { - {x^2} - 2x + 15} - {x^2} - 2x \le a\]

Xem đáp án » 05/07/2022 159

Câu 10:

Giải bất phương trình \[ - 2{x^2} + 3x - 7 \ge 0.\].

Xem đáp án » 05/07/2022 157

Câu 11:

Tập nghiệm của bất phương trình \[\left| {x - 3} \right| >- 1\]là

Xem đáp án » 05/07/2022 154

Câu 12:

Cho biểu thức \[f\left( x \right) = \left( {x + 5} \right)\left( {3 - x} \right).\]Tập hợp tất cả các giá trị của x thỏa mãn bất phương trình f(x) ≤ 0  là

Xem đáp án » 05/07/2022 153

Câu 13:

Tập nghiệm của bất phương trình: \[ - {x^2} + 6x + 7\; \ge 0\;\] là:

Xem đáp án » 05/07/2022 152

Câu 14:

Giải bất phương trình \[x\left( {x + 5} \right) \le 2\left( {{x^2} + 2} \right)\] ta được nghiệm:

Xem đáp án » 05/07/2022 147

Câu 15:

Bất phương trình  \[\left( {x + 1} \right)\left( {x + 4} \right) < 5\sqrt {{x^2} + 5x + 28} \] có nghiệm là

Xem đáp án » 05/07/2022 141

Câu hỏi mới nhất

Xem thêm »
Xem thêm »