Cho cấp số cộng có tổng của 4 số hạng liên tiếp bằng 22, tổng bình phương của chúng bằng 166. Bốn số hạng của cấp số cộng này là:
A.1,4,7,10
B.1,4,5,10
C.2,3,5,10
D.2,3,4,5
Gọi 4 số hạng liên tiếp của CSC làu,u+d,u+2d,u+3d Theo giả thiết ta có:
{u+u+d+u+2d+u+3d=22u2+(u+d)2+(u+2d)2+(u+3d)2=166
⇔{4u+6d=224u2+12ud+14d2=166⇔{2u+3d=112u2+6ud+7d2=83⇔{u=11−3d29d2−66d+1212+611−3d2d+7d2=83(∗)
(∗)⇔9d2−66d+121+66d−18d2+14d2=166⇔5d2=45⇔d=±3
d=3⇒u=11−3.32=1⇒ 4 số cần tìm là 1, 4, 7, 10
d=−3⇒u=11−3(−3)2=10⇒ 4 số cần tìm là 10,7,4,1.10,7,4,1.
Đáp án cần chọn là: A
Tìm tất cả các giá trị của tham số m để phương trình sau có ba nghiệm phân biệt lập thành một cấp số cộng : x3−3mx2+2m(m−4)x+9m2−m=0?
Cách 1: Giải bài toán bằng cách tự luận:
Giả sử phương trình có ba nghiệm phân biệtx1,x2,x3 lập thành một cấp số cộng. Theo định lí Vi-et ta cóx1+x2+x3=−ba=3m
Vìx1,x2,x3 lập thành một cấp số cộng nên
x1+x3=2x2⇒x1+x2+x3=3x2=3m⇔x2=m
Thayx2=m vào phương trình ban đầu ta được
m3−3m3+2m2(m−4)+9m2−m=m2−m=0
⇔[m=0m=1
Thử lại:
Khi m=0 , phương trình trở thànhx3=0⇔x=0 phương trình có nghiệm duy nhất (loại)
Khi m=1 , phương trình trở thànhx3−3x2−6x+8=0⇔[x=−2x=1x=4 Dễ thấy −2,1,4−2,1,4 lập thành 1 cấp số cộng có công sai d=3.
Vậy m=1 thỏa mãn yêu cầu bài toán.
Cách 2: Giải bài toán bằng cách trắc nghiệm.
Thử lần lượt từng đáp án. Trước hết ta thử đáp án A và D vì mm nguyên.
Khi m=0 ta có phương trìnhx3=0⇔x=0 phương trình có nghiệm duy nhất (loại)
Khi m=1 phương trình trở thành x3−3x2−6x+8=0⇔[x=−2x=1x=4 Dễ thấy −2,1,4 lập thành 1 cấp số cộng có công sai d=3 .
Vậy m=1 thỏa mãn yêu cầu bài toán.
Cho ba số dương a,b,c thỏa mãn điều kiện 1√b+√c,1√a+√b,2√c+√a lập thành một cấp số cộng. Mệnh đề nào dưới đây là đúng ?
Cho các số thực x,y,z thỏa mãn điều kiện ba số 1x+y,1y+z,1z+x theo thứ tự lập thành một cấp số cộng. Mệnh đề nào dưới đây là mệnh đề đúng ?
Cho cấp số cộng (un)xác định bởi u3=−2và un+1=un+3,∀n∈N∗ Xác định số hạng tổng quát của cấp số cộng đó.
Viết sáu số xen giữa 3 và 24 để được một cấp số cộng có 88 số hạng. Sáu số hạng cần viết thêm là :
Cho cấp số cộng (un)với {u3+u5=5u3.u5=6. Tìm số hạng đầu của cấp số cộng.
Trên một bàn cờ có nhiều ô vuông. Người ta đặt 7 hạt dẻ vào ô vuông đầu tiên, sau đó đặt tiếp vào ô vuông thứ hai nhiều hơn ô đầu tiên là 5 hạt dẻ, tiếp tục đặt vào ô vuông thứ ba số hạt dẻ nhiều hơn ô thứ hai là 5 hạt dẻ,… và cứ thế tiếp tục đến ô cuối cùng. Biết rằng đặt hết số ô trên bàn cờ người ta phải sử dụng hết 25450 hạt dẻ. Hỏi bàn cờ đó có bao nhiêu ô?
Biết rằng tồn tại các giá trị của x∈[0;2π] để ba số 1+sinx,sin2x,1+sin3xlập thành một cấp số cộng, tính tổng S các giá trị đó của x.
Biết rằng tồn tại hai giá trị của tham số m để phương trình sau có bốn nghiệm phân biệt lập thành một cấp số cộng: x4−10x2+2m2+7m=0, tính tổng lập phương của hai giá trị đó.
Đặtt=x2(t≥0) khi đó phương trình trở thànht2−10t+2m2+7m=0(*)
Phương trình đã cho có 4 nghiệm dương phân biệt
⇔{Δ′>0S>0P>0⇔{25−2m2−7m>010>02m2+7m>0⇔0<2m2+7m<25
Với điều kiện trên thì (*) có 2 nghiệm phân biệt dương làt1,t2(t1<t2) Do đó phương trình ban đầu có 4 nghiệm phân biệt được sắp xếp theo thứ tự tăng dần như sau−√t2,−√t1,√t1,√t2
Bốn nghiệm này lập thành cấp số cộng thì
−√t1+√t2=2√t1⇔3√t1=√t2⇔9t1=t2
Mà theo định lí Vi-et ta cót1+t2=10⇔9t2+t2=10⇔t2=1⇒t1=9
Lại cót1t2=2m2+7m=9⇔[m=1m=−92(tm)
Do đó13+(−92)3=−7218
Mặt sàn tầng một của một ngôi nhà cao hơn mặt sân 0,5m. Cầu thang đi từ tầng một lên tầng hai gồm 21 bậc, mỗi bậc cao 18cm. Ký hiệu hn là độ cao của bậc thứ n so với mặt sân. Viết công thức để tìm độ cao hn.
Ký hiệu hn là độ cao bậc n so với mặt sân. Khi đó ta cóhn+1=hn+0,18(m) trong đóh1=0,5m là độ cao của bậc 1 so với mặt sân.
Dãy số(hn) là cấp số cộng cóh1=0,5 và công sai d=0,18. Suy ra số hạng tổng quát của cấp số cộng này làhn=h1+(n−1)d=0,5+(n−1)0,18 (mét).
Độ dài 3 cạnh của một tam giác vuông lập thành một cấp số cộng . Nếu trung bình cộng ba cạnh bằng 6 thì công sai của cấp số cộng này là:
Cho cấp số cộng (un)có công sai d = 2 và u22+u23+u24 đạt giá trị nhỏ nhất. Số 2018 là số hạng thứ bao nhiêu của cấp số cộng (un)?