Giới hạn \[\lim \frac{{{{\left( {2 - 5n} \right)}^3}{{\left( {n + 1} \right)}^2}}}{{2 - 25{n^5}}}\] bằng?
A.−4.
B.−1.
C.5.
D.\[ - \frac{3}{2}.\]
\[\lim \frac{{{{(2 - 5n)}^3}{{(n + 1)}^2}}}{{2 - 25{n^5}}} = \lim \frac{{\frac{{{{(2 - 5n)}^3}}}{{{n^3}}}.\frac{{{{(n + 1)}^2}}}{{{n^2}}}}}{{\frac{{2 - 25{n^5}}}{{{n^5}}}}} = \frac{{{{\left( {\frac{{2 - 5n}}{n}} \right)}^3}.{{\left( {\frac{{n + 1}}{n}} \right)}^2}}}{{\frac{2}{{{n^5}}} - 25}}\]
\[ = \lim \frac{{{{\left( {\frac{2}{n} - 5} \right)}^3}.{{\left( {1 + \frac{1}{n}} \right)}^2}}}{{\frac{2}{{{n^5}}} - 25}} = \frac{{{{\left( {0 - 5} \right)}^3}{{\left( {1 + 0} \right)}^2}}}{{0 - 25}} = \frac{{{{( - 5)}^3}{{.1}^2}}}{{ - 25}} = 5\]
Đáp án cần chọn là: C
Cho dãy số \[({u_n})\]với \[{u_n} = \frac{1}{{1.3}} + \frac{1}{{3.5}} + ... + \frac{1}{{\left( {2n - 1} \right).\left( {2n + 1} \right)}}\]
Khi đó \[lim\,{u_n}\] bằng?
Cho hai dãy số \[\left( {{u_n}} \right),\left( {{v_n}} \right)\]thỏa mãn \[\left| {{u_n}} \right| \le {v_n}\] với mọi n và \[\lim {u_n} = 0\] thì:
Biết \[\lim {u_n} = 3\]. Chọn mệnh đề đúng trong các mệnh đề sau.
Cho \[{u_n} = \frac{{{n^2} - 3n}}{{1 - 4{n^3}}}\]. Khi đó \[lim\,{u_n}\]bằng?
Cho \[{u_n} = \frac{{{n^2} - 3n}}{{1 - 4{n^3}}}\]. Khi đó \[lim\,{u_n}\]bằng?
Cho các số thực a, b thỏa \[\left| a \right| < 1,\;\;\left| b \right| < 1\]. Tìm giới hạn \[I = lim\frac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}}\].
Cho hình vuông \[{A_1}{B_1}{C_1}{D_1}\] có cạnh bằng a và có diện tích \[{S_1}\]. Nối bốn trung điểm \[{A_2},{B_2},{C_2},{D_2}\;\] ta được hình vuông thứ hai có diện tích \[{S_2}\]. Tiếp tục như thế, ta được hình vuông \[{A_3}{B_3}{C_3}{D_3}\] có diện tích \[{S_3}, \ldots \;\] Tính tổng \[{S_1} + {S_2} + \ldots \;\] bằng
Giá trị \[\lim \frac{{\sin \left( {n!} \right)}}{{{n^2} + 1}}\] bằng
Giả sử \[\lim {u_n} = L,\lim {v_n} = M\] và c là một hằng số. Chọn mệnh đề sai:
Dãy \[\left( {{u_n}} \right)\]có giới hạn \[ - \infty \] ta viết là: