Giá trị của \[B = {\rm{lim}}\frac{{\sqrt[{\rm{n}}]{{n!}}}}{{\sqrt {{n^3} + 2n} }}\] bằng:
A.\[ + \infty \]
B. \[ - \infty \]
C. 0
D. 1
Ta có:\[n! < {n^n} \Rightarrow \sqrt[n]{{n!}} < \sqrt[n]{{{n^n}}}\]
\[ \Rightarrow 0 < \frac{{\sqrt[{\rm{n}}]{{n!}}}}{{\sqrt {{n^3} + 2n} }} < \frac{{\sqrt[{\rm{n}}]{{{n^n}}}}}{{\sqrt {{n^3} + 2n} }} = \frac{n}{{\sqrt {{n^3} + 2n} }}\]
Mà\[\lim 0 = 0\,;\;\,\,\lim \,\frac{n}{{\sqrt {{n^3} + 2n} }} = \lim \frac{n}{{n\sqrt {n + \frac{2}{n}} }} = \lim \frac{1}{{\sqrt {n + \frac{2}{n}} }} = 0\]
\[ \Rightarrow \lim \frac{{\sqrt[n]{{n!}}}}{{\sqrt {{n^3} + 2n} }} = 0 \Rightarrow B = 0.\]
Đáp án cần chọn là: C
Cho dãy số \[({u_n})\]với \[{u_n} = \frac{1}{{1.3}} + \frac{1}{{3.5}} + ... + \frac{1}{{\left( {2n - 1} \right).\left( {2n + 1} \right)}}\]
Khi đó \[lim\,{u_n}\] bằng?
Cho hai dãy số \[\left( {{u_n}} \right),\left( {{v_n}} \right)\]thỏa mãn \[\left| {{u_n}} \right| \le {v_n}\] với mọi n và \[\lim {u_n} = 0\] thì:
Biết \[\lim {u_n} = 3\]. Chọn mệnh đề đúng trong các mệnh đề sau.
Cho \[{u_n} = \frac{{{n^2} - 3n}}{{1 - 4{n^3}}}\]. Khi đó \[lim\,{u_n}\]bằng?
Cho \[{u_n} = \frac{{{n^2} - 3n}}{{1 - 4{n^3}}}\]. Khi đó \[lim\,{u_n}\]bằng?
Cho các số thực a, b thỏa \[\left| a \right| < 1,\;\;\left| b \right| < 1\]. Tìm giới hạn \[I = lim\frac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}}\].
Cho hình vuông \[{A_1}{B_1}{C_1}{D_1}\] có cạnh bằng a và có diện tích \[{S_1}\]. Nối bốn trung điểm \[{A_2},{B_2},{C_2},{D_2}\;\] ta được hình vuông thứ hai có diện tích \[{S_2}\]. Tiếp tục như thế, ta được hình vuông \[{A_3}{B_3}{C_3}{D_3}\] có diện tích \[{S_3}, \ldots \;\] Tính tổng \[{S_1} + {S_2} + \ldots \;\] bằng
Giá trị \[\lim \frac{{\sin \left( {n!} \right)}}{{{n^2} + 1}}\] bằng
Giả sử \[\lim {u_n} = L,\lim {v_n} = M\] và c là một hằng số. Chọn mệnh đề sai:
Dãy \[\left( {{u_n}} \right)\]có giới hạn \[ - \infty \] ta viết là: