\[\lim \left( {\frac{2}{n} + \frac{3}{{{n^2}}}} \right)\]bằng
A.1
B.0
C.\[ + \infty \]
D. \(\frac{1}{2}\)
Bước 1:
Vì \[\lim \frac{1}{n} = 0;\lim \frac{1}{{{n^2}}} = 0\]
Bước 2:
Nên\[\lim \left( {\frac{2}{n} + \frac{3}{{{n^2}}}} \right) = 2.0 + 3.0 = 0\]
Đáp án cần chọn là: B
Cho dãy số \[({u_n})\]với \[{u_n} = \frac{1}{{1.3}} + \frac{1}{{3.5}} + ... + \frac{1}{{\left( {2n - 1} \right).\left( {2n + 1} \right)}}\]
Khi đó \[lim\,{u_n}\] bằng?
Cho hai dãy số \[\left( {{u_n}} \right),\left( {{v_n}} \right)\]thỏa mãn \[\left| {{u_n}} \right| \le {v_n}\] với mọi n và \[\lim {u_n} = 0\] thì:
Biết \[\lim {u_n} = 3\]. Chọn mệnh đề đúng trong các mệnh đề sau.
Cho \[{u_n} = \frac{{{n^2} - 3n}}{{1 - 4{n^3}}}\]. Khi đó \[lim\,{u_n}\]bằng?
Cho \[{u_n} = \frac{{{n^2} - 3n}}{{1 - 4{n^3}}}\]. Khi đó \[lim\,{u_n}\]bằng?
Cho các số thực a, b thỏa \[\left| a \right| < 1,\;\;\left| b \right| < 1\]. Tìm giới hạn \[I = lim\frac{{1 + a + {a^2} + ... + {a^n}}}{{1 + b + {b^2} + ... + {b^n}}}\].
Giá trị \[\lim \frac{{\sin \left( {n!} \right)}}{{{n^2} + 1}}\] bằng
Cho hình vuông \[{A_1}{B_1}{C_1}{D_1}\] có cạnh bằng a và có diện tích \[{S_1}\]. Nối bốn trung điểm \[{A_2},{B_2},{C_2},{D_2}\;\] ta được hình vuông thứ hai có diện tích \[{S_2}\]. Tiếp tục như thế, ta được hình vuông \[{A_3}{B_3}{C_3}{D_3}\] có diện tích \[{S_3}, \ldots \;\] Tính tổng \[{S_1} + {S_2} + \ldots \;\] bằng
Giả sử \[\lim {u_n} = L,\lim {v_n} = M\] và c là một hằng số. Chọn mệnh đề sai: