Có 8 quyển sách Địa lí, 12 quyển sách Lịch sử, 10 quyển sách Giáo dục công dân (các quyển sách cùng một môn thì giống nhau) được chia thành 15 phần quà, mỗi phần gồm 2 quyển khác loại. Lấy ngẫu nhiên 2 phần quà từ 15 phần quà. Xác suất để hai phần quà lấy được khác nhau là:
A.\[\frac{{71}}{{105}}\]
B. \[\frac{{59}}{{190}}\]
C. \[\frac{{131}}{{190}}\]
D. \[\frac{7}{{45}}\]
Gọi số phần quà Sử - Địa là xx, số phần quà Sử - GDCD là yy và số phần quà Địa – GDCD là zz
Tổng số phần quà là 15 nên x+y+z=15.
Phần quà có môn sử chỉ có 2 kiểu: Sử- Địa (x phần quà) và Sử - GDCD(y phần quà). Do có 12 quyển sách sử nên 12 quyển này nằm hoàn toàn trong 2 kiểu phần quà trên. Do đó, x+y=12.
Tương tự với Địa: x+z=8.
GDCD: y+z=10
\(\left\{ {\begin{array}{*{20}{c}}{x + y + z = 15}\\{x + y = 12}\\{y + z = 10}\\{x + z = 8}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{c}}{x = 5}\\{y = 7}\\{z = 3}\end{array}} \right.\)
Suy ra số phần qùa Sử - Địa là 5.
Số phần quà Sử - GDCD là 7.
Số phần quà Địa – GDCD là 3.
Chọn 2 trong 15 phần quà ⇒ Không gian mẫu\[n\left( {\rm{\Omega }} \right) = C_{15}^2 = 105\]
Gọi A là biến cố: “hai phần quà lấy được khác nhau”, khi đó ta có:
\[n\left( A \right) = C_5^1.C_7^1 + C_7^1.C_3^1 + C_3^1.C_5^1 = 71\]
Vậy\[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( {\rm{\Omega }} \right)}} = \frac{{71}}{{105}}\]
Đáp án cần chọn là: A
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp \[\left\{ {1,2,3,4,5,6,7} \right\}\]Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng
Cho các chữ số 0,1,2,3,4,5,6. Gọi S là tập hợp các số tự nhiên có 4 chữ số đôi một khác nhau được lập từ các chữ số đã cho. Lấy ngẫu nhiên 2 số từ S, gọi A là biến cố: “tổng hai số lấy được là một số chẵn”. Xác suất của biến cố A là:
Gieo ba con xúc sắc cân đối, đồng chất. Xác suất để số chấm xuất hiện trên ba con xúc sắc đó bằng nhau là:
Có 60 quả cầu được đánh số từ 1 đến 60. Lấy ngẫu nhiên đồng thời hai quả cầu rồi nhân các số trên hai quả cầu với nhau. Tính xác suất để tích nhận được là số chia hết cho 10.
Trong các thí nghiệm sau, thí nghiệm nào không phải là phép thử ngẫu nhiên?
Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập hợp các tam giác có các đỉnh là các đỉnh của đa giác đều trên. Tính xác suất P để chọn được một tam giác từ tập X là tam giác cân nhưng không phải tam giác đều.
Hai bạn Công và Thành cùng viết ngẫu nhiên ra một số tự nhiên gồm 2 chữ số phân biệt. Xác suất để hai số được viết ra có ít nhất một chữ số chung bằng:
Chọn ngẫu nhiên một số tự nhiên trong các số tự nhiên có bốn chữ số. Tính xác xuất để số được chọn có ít nhất hai chữ số 8 đứng liền nhau.
Cho A và \(\overline A \)là hai biến cố đối nhau. Chọn câu đúng:
Gieo hai con súc sắc cân đối và đồng chất. Xác suất để tổng số chấm trên mặt xuất hiện của hai con súc sắc bằng 7 là:
Gieo một con xúc sắc hai lần. Biến cố A là biến cố để hai lần gieo có ít nhất một mặt 6 chấm. Các phần tử của ΩA là:
Gieo ba đồng xu cân đối, đồng chất. Xác suất để ba đồng xu ra cùng một mặt là:
Cho phép thử có không gian mẫu \[\Omega = \left\{ {1;2;3;4;5;6} \right\}\] Cặp biến cố không đối nhau là:
Gieo hai con xúc sắc và gọi kết quả xảy ra là tích của số chấm xuất hiện ở mỗi xúc sắc . Số phần tử của không gian mẫu là: