Chủ nhật, 12/01/2025
IMG-LOGO

Câu hỏi:

22/07/2024 191

Cho hình hộp chữ nhật ABCD.A′B′C′D′ có đáy ABCD là hình vuông cạnh \(a\sqrt 2 \) cạnh bên AA′=a (minh họa như hình vẽ). Góc giữa hai mặt phẳng (A′BD) và (C′BD) bằng bao nhiêu độ?

Cho hình hộp chữ nhật ABCD.A′B′C′D′ có đáy ABCD là hình vuông cạnh  (ảnh 1)

Trả lời:

verified Giải bởi qa.haylamdo.com

Cho hình hộp chữ nhật ABCD.A′B′C′D′ có đáy ABCD là hình vuông cạnh  (ảnh 2)

Bước 1: Xác định góc

Vì ABCD là hình vuông nên AC vuông góc BD tại O.

Suy ra \[BD \bot \left( {A'OC'} \right)\]. Góc giữa hai mặt phẳng\[\left( {A'BD} \right),\,\,\left( {C'BD} \right)\]  là\[\angle A'OC'\]

Bước 2: Sử dụng tính chất tam giác vuông cân để tính góc.

Gọi H là tâm hình vuông A′B′C′D′ thì H là trung điểm A′C′ và\[\begin{array}{*{20}{l}}{OH = A'A = a}\\{A'H = HC' = \frac{{A'C'}}{2} = \frac{{A'B'\sqrt 2 }}{2} = \frac{{a\sqrt 2 .\sqrt 2 }}{2} = a}\end{array}\]

Suy ra các tam giác\[OHA';\,\,OHC'\] vuông cân và\[\angle A'OC' = {90^ \circ }\]

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, cạnh a. Đường thẳng SO vuông góc với mặt phẳng đáy (ABCD) và \(SO = \frac{{a\sqrt 3 }}{2}\). Tính góc giữa hai mặt phẳng (SBC) và (ABCD).

Xem đáp án » 05/07/2022 270

Câu 2:

Trong không gian cho tam giác đều SAB và hình vuông ABCD cạnh a nằm trên hai mặt phẳng vuông góc. Gọi H, K lần lượt là trung điểm của AB, CD. Gọi φ là góc giữa hai mặt phẳng (SAB) và (SCD). Mệnh đề nào sau đây đúng? 

Xem đáp án » 05/07/2022 257

Câu 3:

Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA=x và vuông góc với mặt phẳng (ABCD). Xác định x để hai mặt phẳng (SBC) và (SCD) tạo với nhau một góc 600.

Xem đáp án » 05/07/2022 254

Câu 4:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân, AB=BC=2a. Tam giác SAC cân tại S và nằm trong mặt phẳng vuông góc với (ABC), \(SA = \sqrt 3 a\). Góc giữa hai mặt phẳng (SAB) và (SAC) bằng:

Xem đáp án » 05/07/2022 218

Câu 5:

Cho hình chóp S.ABC có đáy ABC. là tam giác vuông tại B, BC=a. Cạnh bên SA=a vuông góc với mặt phẳng đáy. Góc giữa hai mặt phẳng (SBC) và (ABC) bằng \[{45^0}\]. Độ dài AC bằng

Xem đáp án » 05/07/2022 208

Câu 6:

Cho hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, AB=2a, AD=CD=a. Cạnh bên SA=a và vuông góc với mặt phẳng (ABCD). Gọi \[\varphi \] là góc giữa hai mặt phẳng (SBC) và (ABCD) . Mệnh đề nào sau đây đúng?

Xem đáp án » 05/07/2022 193

Câu 7:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại C. Gọi H là trung điểm AB. Biết rằng SH vuông góc với mặt phẳng (ABC) và AB=SH=a. Tính cosin của góc α tọa bởi hai mặt phẳng (SAB) và (SAC). 

Xem đáp án » 05/07/2022 193

Câu 8:

Cho hình lăng trụ tứ giác đều ABCD.A′B′C′D′ có đáy cạnh bằng a, góc giữa hai mặt phẳng (ABCD) và (ABC′) có số đo bằng \({60^0}\). Độ dài cạnh bên của hình lăng trụ bằng

Xem đáp án » 05/07/2022 190

Câu 9:

Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, cạnh bên SA vuông góc với đáy. Gọi E,F lần lượt là trung điểm của cạnh AB và AC. Góc giữa hai mặt phẳng (SEF) và (SBC) là

Xem đáp án » 05/07/2022 181

Câu 10:

Cho hai tam giác ACD và BCD nằm trên hai mặt phẳng vuông góc với nhau và AC=AD=BC=BD=a,CD=2x. Với giá trị nào của x thì hai mặt phẳng (ABC) và (ABD) vuông góc. 

Xem đáp án » 05/07/2022 173

Câu 11:

Đường thẳng CD vuông góc với mặt phẳng

Xem đáp án » 05/07/2022 163

Câu 12:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, các cạnh \[SA = SB = a,\;SD = a\sqrt 2 \]. Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng \({90^0}\). Độ dài đoạn thẳng BD

Xem đáp án » 05/07/2022 157

Câu 13:

Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh aa. Cạnh bên \(SA = a\sqrt 3 \) và vuông góc với mặt đáy (ABC). Gọi φ là góc giữa hai mặt phẳng (SBC) và (ABC). Mệnh đề nào sau đây đúng?

Xem đáp án » 05/07/2022 152

Câu 14:

Cho hình chóp đều S.ABCD có tất cả các cạnh bằng aa. Gọi M là trung điểm SC. Tính góc \[\varphi \] giữa hai mặt phẳng (MBD) và  (ABCD).

Xem đáp án » 05/07/2022 149

Câu 15:

Trong mặt phẳng (P) cho tam giác đều ABC cạnh a. Trên các đường thẳng vuông góc với mặt phẳng (P) tại B và C lấy điểm D,E cùng phía so với (P) sao cho \(BD = \frac{{a\sqrt 3 }}{2}\) và \(CE = a\sqrt 3 \).Tính góc giữa hai mặt phẳng (ADE) và (ABC).

Xem đáp án » 05/07/2022 141

Câu hỏi mới nhất

Xem thêm »
Xem thêm »