Chủ nhật, 12/01/2025
IMG-LOGO

Câu hỏi:

22/07/2024 98

Hỏi có bao nhiêu giá trị m  nguyên trong đoạn \[\left[ { - 2017;2017} \right]\;\]để phương trình \[logmx = 2log(x + 1)\;\;\] có nghiệm duy nhất?

A.2017

B.4014

C.2018

Đáp án chính xác

D.4015

Trả lời:

verified Giải bởi qa.haylamdo.com

ĐK: \[x > - 1;mx > 0\]

\[\begin{array}{*{20}{l}}{\log (m{\rm{x}}) = 2\log (x + 1) \Leftrightarrow m{\rm{x}} = {{(x + 1)}^2} \Leftrightarrow {x^2} + (2 - m)x + 1 = 0}\\{{\rm{\Delta }} = {m^2} - 4m + 4 - 4 = {m^2} - 4m}\end{array}\]

Để phương trình đã cho có nghiệm duy nhất thì có 2 TH:

TH1: Phương trình trên có nghiệm duy nhất: \[{m^2} = 4m \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m = 0}\\{m = 4}\end{array}} \right.\]Tuy nhiên giá trị m=0 loại do khi đó nghiệm là x=−1.

TH2: Phương trình trên có 2 nghiệm thỏa: \[{x_1} \le - 1 < {x_2}\]

Nếu có \[{x_1} = - 1 \to 1 - (2 - m) + 1 = 0 \to m = 0\] thay lại vô lý

\[{x_1} < - 1 < {x_2} \to ({x_1} + 1)({x_2} + 1) < 0 \Leftrightarrow {x_1}{x_2} + {x_1} + {x_2} + 1 < 0 \to 1 + m - 2 + 1 < 0 \Leftrightarrow m < 0.\]

Như vậy sẽ có các giá trị \[ - 2017; - 2016; \ldots \ldots - 1\] và 4.

Có 2018 giá trị.

Đáp án cần chọn là: C

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giải phương trình  \[{\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \frac{5}{4}\]

Xem đáp án » 05/07/2022 198

Câu 2:

Cho phương trình: \[{4^{ - \left| {x - m} \right|}}.{\log _{\sqrt 2 }}\left( {{x^2} - 2x + 3} \right) + {2^{2x - {x^2}}}.{\log _{\frac{1}{2}}}\left( {2\left| {x - m} \right| + 2} \right) = 0\] với m là tham số. Tổng tất cả các giá trị của tham số m để phương trình đã cho có ba nghiệm phân biệt là:

Xem đáp án » 05/07/2022 193

Câu 3:

Cho các số thực dương a,b,c  khác 1 thỏa mãn 

Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \[P = lo{g_a}ab - lo{g_b}bc\]. Tính giá trị của biểu thức \[S = 2{m^2} + 9{M^2}\].

Xem đáp án » 05/07/2022 192

Câu 4:

Gọi \[{x_1},{x_2}\] là các nghiệm của phương trình \[{\left( {{{\log }_{\frac{1}{3}}}x} \right)^2} - \left( {\sqrt 3 + 1} \right){\log _3}x + \sqrt 3 = 0\]. Khi đó tích \[{x_1},{x_2}\] bằng:

Xem đáp án » 05/07/2022 185

Câu 5:

Phương trình \[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1\] có hai nghiệm là \[{x_1};{x_2}\;\] thì tổng \[{x_1} + {x_2}\;\] là:

Xem đáp án » 05/07/2022 184

Câu 6:

Hỏi phương trình \[2{\log _3}\left( {\cot x} \right) = {\log _2}\left( {\cos x} \right)\]có bao nhiêu nghiệm trong khoảng \[\left( {0;2017\pi } \right).\]

Xem đáp án » 05/07/2022 182

Câu 7:

Giá trị của x thỏa mãn \[lo{g_{\frac{1}{2}}}(3 - x) = 2\;\] là

Xem đáp án » 05/07/2022 157

Câu 8:

Tìm tập nghiệm S của phương trình \[lo{g_2}({x^2} - 4x + 3) = lo{g_2}(4x - 4)\]

Xem đáp án » 05/07/2022 149

Câu 9:

Cho phương trình \[{11^x} + m = {\log _{11}}\left( {x - m} \right)\]với mm là tham số. Có bao nhiêu giá trị nguyên của \[m \in \left( { - 205;205} \right)\] để phương trình đã cho có nghiệm?

Xem đáp án » 05/07/2022 146

Câu 10:

Giải phương trình \[{\log _3}\left( {2x - 1} \right) = 2\] , ta có nghiệm là:

Xem đáp án » 05/07/2022 144

Câu 11:

Giải phương trình \[{\log _2}\left( {{2^x} - 1} \right).{\log _4}\left( {{2^{x + 1}} - 2} \right) = 1\] Ta có nghiệm:

Xem đáp án » 05/07/2022 140

Câu 12:

Tìm tập hợp tất cả các giá trị của tham số m để phương trình  \[lo{g_2}x - lo{g_2}(x - 2) = m\] có nghiệm

Xem đáp án » 05/07/2022 133

Câu 13:

Tập nghiệm của phương trình \[{\log _2}\left( {{x^2} - 1} \right) = {\log _2}2x\] là:

Xem đáp án » 05/07/2022 131

Câu 14:

Tìm tập nghiệm S của phương trình \[{\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 1} \right) = 3\].

Xem đáp án » 05/07/2022 130

Câu 15:

Giải phương trình \[{\log _4}(x + 1) + {\log _4}(x - 3) = 3\]

Xem đáp án » 05/07/2022 130

Câu hỏi mới nhất

Xem thêm »
Xem thêm »