Giả sử m là số thực sao cho phương trình \[log_3^2x - (m + 2)lo{g_3}x + 3m - 2 = 0\] có hai nghiệm \[{x_1};{x_2}\] phân biệt thỏa mãn \[{x_1}.{x_2} = 9\].
Khi đó m thỏa mãn tính chất nào sau đây?
A.\[m \in \left( {3;4} \right)\]
B. \[m \in \left( {4;6} \right)\]
C. \[m \in \left( { - 1;1} \right)\]
D. \[m \in \left( {1;3} \right)\]
Đặt \[t = {\log _3}x\] suy ra phương trình trở thành\[{t^2} - (m + 2)t + 3m - 2 = 0\left( * \right)\]
Để phương trình có hai nghiệm \[{x_1};{x_2}\] thì (*) cũng có hai nghiệm \[{t_1};{t_2}\] .
Phương trình (*) có 2 nghiệm phân biệt \[{t_1};{t_2}\]
\[ \Leftrightarrow \Delta > 0 \Leftrightarrow {(m + 2)^2} - 4(3m - 2) > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{m > 6}\\{m < 2}\end{array}} \right.\]
Ta có:\(\left\{ {\begin{array}{*{20}{c}}{{x_1} = {3^{{t_1}}}}\\{{x_2} = {3^{{t_2}}}}\end{array}} \right. \Rightarrow {x_1}.{x_2} = {3^{{t_1} + {t_2}}} = 9 \Leftrightarrow {t_1} + {t_2} = 2.\)
Theo hệ thức Vi-ét ta có: \[{t_1} + {t_2} = m + 2\]
\[ \Rightarrow m + 2 = 2 \Leftrightarrow m = 0\]Suy ra \[m \in \left( { - 1;1} \right)\]
Đáp án cần chọn là: C
Giải phương trình \[{\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \frac{5}{4}\]
Cho phương trình: \[{4^{ - \left| {x - m} \right|}}.{\log _{\sqrt 2 }}\left( {{x^2} - 2x + 3} \right) + {2^{2x - {x^2}}}.{\log _{\frac{1}{2}}}\left( {2\left| {x - m} \right| + 2} \right) = 0\] với m là tham số. Tổng tất cả các giá trị của tham số m để phương trình đã cho có ba nghiệm phân biệt là:
Cho các số thực dương a,b,c khác 1 thỏa mãn
Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \[P = lo{g_a}ab - lo{g_b}bc\]. Tính giá trị của biểu thức \[S = 2{m^2} + 9{M^2}\].
Gọi \[{x_1},{x_2}\] là các nghiệm của phương trình \[{\left( {{{\log }_{\frac{1}{3}}}x} \right)^2} - \left( {\sqrt 3 + 1} \right){\log _3}x + \sqrt 3 = 0\]. Khi đó tích \[{x_1},{x_2}\] bằng:
Phương trình \[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1\] có hai nghiệm là \[{x_1};{x_2}\;\] thì tổng \[{x_1} + {x_2}\;\] là:
Hỏi phương trình \[2{\log _3}\left( {\cot x} \right) = {\log _2}\left( {\cos x} \right)\]có bao nhiêu nghiệm trong khoảng \[\left( {0;2017\pi } \right).\]
Tìm tập nghiệm S của phương trình \[lo{g_2}({x^2} - 4x + 3) = lo{g_2}(4x - 4)\]
Cho phương trình \[{11^x} + m = {\log _{11}}\left( {x - m} \right)\]với mm là tham số. Có bao nhiêu giá trị nguyên của \[m \in \left( { - 205;205} \right)\] để phương trình đã cho có nghiệm?
Giải phương trình \[{\log _3}\left( {2x - 1} \right) = 2\] , ta có nghiệm là:
Giải phương trình \[{\log _2}\left( {{2^x} - 1} \right).{\log _4}\left( {{2^{x + 1}} - 2} \right) = 1\] Ta có nghiệm:
Tìm tập hợp tất cả các giá trị của tham số m để phương trình \[lo{g_2}x - lo{g_2}(x - 2) = m\] có nghiệm
Tập nghiệm của phương trình \[{\log _2}\left( {{x^2} - 1} \right) = {\log _2}2x\] là:
Tìm tập nghiệm S của phương trình \[{\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 1} \right) = 3\].