Cho phương trình \[{\log _3}x.{\log _5}x = {\log _3}x + {\log _5}x\]. Khẳng định nào sau đây là đúng?
A.Phương trình có một nghiệm hữu tỉ và một nghiệm vô tỉ
B.Phương trình có một nghiệm duy nhất
C.Phương trình vô nghiệm
D.Tổng các nghiệm của phương trình là một số chính phương
Điều kiện x>0
Ta đặt\[{\log _3}x = u;{\log _5}x = v \Rightarrow u.v = u + v\]
Khi đó\[x = {3^u} = {5^v}\] suy ra\[{\log _3}{3^u} = {\log _3}{5^v} \Leftrightarrow u = v{\log _3}5\]
\[ \Rightarrow uv = u + v \Leftrightarrow {v^2}{\log _3}5 = v{\log _3}5 + v \Leftrightarrow {v^2}{\log _3}5 - v\left( {{{\log }_3}5 + 1} \right) = 0\]
\[ \Leftrightarrow v\left( {v{{\log }_3}5 - {{\log }_3}5 - 1} \right) = 0\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{v = 0}\\{vlo{g_3}5 - lo{g_3}5 - 1 = 0}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{v = 0}\\{v = \frac{{lo{g_3}5 + 1}}{{lo{g_3}5}}}\end{array}} \right. = 1 + \frac{1}{{lo{g_3}5}}\)
\( \Rightarrow \left[ {\begin{array}{*{20}{c}}{u = 0}\\{u = 1 + lo{g_3}5}\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{c}}{x = 1(TM)}\\{x = {3^{1 + lo{g_3}5}} = 15(TM)}\end{array}} \right.\)
Do đó phương trình có hai nghiệm \[{x_1} = 1,{x_2} = 15\] và tổng hai nghiệm bằng 16 là một số chính phương.
Đáp án cần chọn là: D
Giải phương trình \[{\log _3}\left( {x + 2} \right) + {\log _9}{\left( {x + 2} \right)^2} = \frac{5}{4}\]
Cho phương trình: \[{4^{ - \left| {x - m} \right|}}.{\log _{\sqrt 2 }}\left( {{x^2} - 2x + 3} \right) + {2^{2x - {x^2}}}.{\log _{\frac{1}{2}}}\left( {2\left| {x - m} \right| + 2} \right) = 0\] với m là tham số. Tổng tất cả các giá trị của tham số m để phương trình đã cho có ba nghiệm phân biệt là:
Cho các số thực dương a,b,c khác 1 thỏa mãn
Gọi M,m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức \[P = lo{g_a}ab - lo{g_b}bc\]. Tính giá trị của biểu thức \[S = 2{m^2} + 9{M^2}\].
Gọi \[{x_1},{x_2}\] là các nghiệm của phương trình \[{\left( {{{\log }_{\frac{1}{3}}}x} \right)^2} - \left( {\sqrt 3 + 1} \right){\log _3}x + \sqrt 3 = 0\]. Khi đó tích \[{x_1},{x_2}\] bằng:
Phương trình \[{\log _4}\left( {{{3.2}^x} - 1} \right) = x - 1\] có hai nghiệm là \[{x_1};{x_2}\;\] thì tổng \[{x_1} + {x_2}\;\] là:
Hỏi phương trình \[2{\log _3}\left( {\cot x} \right) = {\log _2}\left( {\cos x} \right)\]có bao nhiêu nghiệm trong khoảng \[\left( {0;2017\pi } \right).\]
Tìm tập nghiệm S của phương trình \[lo{g_2}({x^2} - 4x + 3) = lo{g_2}(4x - 4)\]
Cho phương trình \[{11^x} + m = {\log _{11}}\left( {x - m} \right)\]với mm là tham số. Có bao nhiêu giá trị nguyên của \[m \in \left( { - 205;205} \right)\] để phương trình đã cho có nghiệm?
Giải phương trình \[{\log _3}\left( {2x - 1} \right) = 2\] , ta có nghiệm là:
Giải phương trình \[{\log _2}\left( {{2^x} - 1} \right).{\log _4}\left( {{2^{x + 1}} - 2} \right) = 1\] Ta có nghiệm:
Tìm tập hợp tất cả các giá trị của tham số m để phương trình \[lo{g_2}x - lo{g_2}(x - 2) = m\] có nghiệm
Tập nghiệm của phương trình \[{\log _2}\left( {{x^2} - 1} \right) = {\log _2}2x\] là:
Tìm tập nghiệm S của phương trình \[{\log _2}\left( {x - 1} \right) + {\log _2}\left( {x + 1} \right) = 3\].