Mệnh đề nào đúng với mọi số thực x,y?
A.\[{\left( {{2^x}} \right)^y} = {2^{x + y}}\]
B. \[\frac{{{2^x}}}{{{2^y}}} = {2^{\frac{x}{y}}}\]
C. \[{2^x}{.2^y} = {2^{x + y}}\]
D. \[{\left( {\frac{2}{3}} \right)^x} = \frac{{{2^x}}}{{{3^y}}}\]
Ta có: \[{\left( {{2^x}} \right)^y} = {2^{xy}}\] nên A sai.
\[\frac{{{2^x}}}{{{2^y}}} = {2^{x - y}}\] nên B sai.
\[{2^x}{.2^y} = {2^{x + y}}\] nên C đúng.
\[{\left( {\frac{2}{3}} \right)^x} = \frac{{{2^x}}}{{{3^x}}}\] nên D sai.
Đáp án cần chọn là: C
Cho số thực a thỏa mãn \[{\left( {2 - a} \right)^{\frac{3}{4}}} > {\left( {2 - a} \right)^2}\]. Chọn khẳng định đúng:
Rút gọn biểu thức \[P = {a^{\frac{3}{2}}}.\sqrt[3]{a}\] với a > 0.
Rút gọn biểu thức \[P = \frac{{\sqrt[5]{{{b^2}\sqrt b }}}}{{\sqrt[3]{{b\sqrt b }}}}(b > 0)\] ta được kết quả là:
Với giá trị nào của a thì đẳng thức \[\,\,\,\,\,\sqrt {a.\sqrt[3]{{a.\sqrt[4]{a}}}} = \sqrt[{24}]{{{2^5}}}.\frac{1}{{\sqrt {{2^{ - 1}}} }}\]đúng?
Tính giá trị của biểu thức \[P = {\left( {2\sqrt 6 - 5} \right)^{2020}}{\left( {2\sqrt 6 + 5} \right)^{2021}}\].
Cho \[n \in Z,n > 0\], với điều kiện nào của aa thì đẳng thức sau xảy ra: \[{a^{ - n}} = \frac{1}{{{a^n}}}\]?
Giá trị biểu thức \[P = \frac{{{{125}^6}.\left( { - {{16}^3}} \right)2.\left( { - {2^3}} \right)}}{{{{25}^3}.{{\left( { - {5^2}} \right)}^4}}}\] là:
Nếu \[{\left( {a - 2} \right)^{ - \frac{1}{4}}} \le {\left( {a - 2} \right)^{ - \frac{1}{3}}}\]thì khẳng định đúng là:
Cho \[{\left( {\sqrt 2 - 1} \right)^m} < {\left( {\sqrt 2 - 1} \right)^n}\]. Khẳng định nào dưới đây đúng?
Đơn giản biểu thức \[P = \left( {{a^{\frac{1}{4}}} - {b^{\frac{1}{4}}}} \right)\left( {{a^{\frac{1}{4}}} + {b^{\frac{1}{4}}}} \right)\left( {{a^{\frac{1}{2}}} + {b^{\frac{1}{2}}}} \right)\,\,\,\,(a,b > 0)\] ta được: