Thứ bảy, 25/01/2025
IMG-LOGO

Câu hỏi:

22/07/2024 114

\[\smallint x\sin x\cos xdx\]bằng:

A.\[\frac{1}{2}\left( {\frac{1}{4}\sin 2x - \frac{x}{2}\cos 2x} \right) + C\]

Đáp án chính xác

B. \[ - \frac{1}{2}\left( {\frac{1}{2}\sin 2x - \frac{x}{4}\cos 2x} \right) + C\]

C. \[\frac{1}{2}\left( {\frac{1}{2}\sin 2x + \frac{x}{2}\cos 2x} \right) + C\]

D. \[ - \frac{1}{2}\left( {\frac{1}{2}\sin 2x + \frac{x}{4}\cos 2x} \right) + C\]

Trả lời:

verified Giải bởi qa.haylamdo.com

\[I = \smallint x\sin x\cos xdx = \frac{1}{2}\smallint x\sin 2xdx\]

Đặt\(\left\{ {\begin{array}{*{20}{c}}{u = x}\\{dv = sin2xdx}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{du = dx}\\{v = - \frac{{cos2x}}{2}}\end{array}} \right.\)

\[ \Rightarrow I = \frac{1}{2}\left( { - x.\frac{{\cos 2x}}{2} + \frac{1}{2}\smallint \cos 2xdx} \right) + C\]

\[ = \frac{1}{2}\left( { - \frac{{x\cos 2x}}{2} + \frac{{\sin 2x}}{4}} \right) + C\]

Đáp án cần chọn là: A

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biết rằng \[x{e^x}\] là một nguyên hàm của hàm số f(−x) trên khoảng \[\left( { - \infty ; + \infty } \right)\]. Gọi F(x) là một nguyên hàm của \[f\prime \left( x \right){e^x}\;\] thỏa mãn F(0)=1, giá trị của F(−1) bằng:

Xem đáp án » 05/07/2022 183

Câu 2:

Biết \[F\left( x \right) = \left( {ax + b} \right).{e^x}\] là nguyên hàm của hàm số \[y = (2x + 3).{e^x}\]. Khi đó b−a là

Xem đáp án » 05/07/2022 155

Câu 3:

Cho hàm số f(x) có đạo hàm liên tục trên \(\mathbb{R}\) và \[f\left( 0 \right) = 1,\;F(x) = f(x) - {e^x} - x\;\] là một nguyên hàm của f(x). Họ các nguyên hàm của f(x) là:

Xem đáp án » 05/07/2022 141

Câu 4:

Chọn công thức đúng:

Xem đáp án » 05/07/2022 135

Câu 5:

Tìm nguyên hàm của hàm số \[f\left( x \right) = {x^2}ln\left( {3x} \right)\]

Xem đáp án » 05/07/2022 131

Câu 6:

Gọi F(x) là một nguyên hàm của hàm số \[y = x.cosx\] mà F(0)=1. Phát biểu nào sau đây đúng:

Xem đáp án » 05/07/2022 130

Câu 7:

Nguyên hàm của hàm số \[y = \frac{{\left( {{x^2} + x} \right){e^x}}}{{x + {e^{ - x}}}}dx\] là:

Xem đáp án » 05/07/2022 130

Câu 8:

Trong phương pháp nguyên hàm từng phần, nếu \(\left\{ {\begin{array}{*{20}{c}}{u = g\left( x \right)}\\{dv = h\left( x \right)dx}\end{array}} \right.\) thì:

Xem đáp án » 05/07/2022 125

Câu 9:

Ta có \[ - \frac{{x + a}}{{{e^x}}}\] là một họ nguyên hàm của hàm số \[f(x) = \frac{x}{{{e^x}}}\], khi đó:

Xem đáp án » 05/07/2022 125

Câu 10:

Tính \[I = \smallint {e^{2x}}\cos 3xdx\] ta được:

Xem đáp án » 05/07/2022 123

Câu 11:

Tính \[I = \smallint x{\tan ^2}xdx\] ta được:

Xem đáp án » 05/07/2022 121

Câu 12:

Cho \[F\left( x \right) = \smallint \left( {x + 1} \right)f'\left( x \right)dx\]. Tính \[I = \smallint f(x)dx\;\] theo F(x).

Xem đáp án » 05/07/2022 120

Câu 13:

Tìm nguyên hàm F(x) của \[f\left( x \right) = \frac{{{2^x} - 1}}{{{e^x}}}.\] biết F(0)=1.

Xem đáp án » 05/07/2022 119

Câu 14:

Nguyên hàm của hàm số \[f(x) = \cos 2x\ln \left( {\sin x + \cos x} \right)dx\]  là:

Xem đáp án » 05/07/2022 116

Câu 15:

Tính \[I = \smallint \cos \sqrt x dx\] ta được:

Xem đáp án » 05/07/2022 114

Câu hỏi mới nhất

Xem thêm »
Xem thêm »