Cho \[{z_1} = 2 + i;\,\,{z_2} = 1 - 3i.\]. Tính \[A = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}.\]
A.\(\sqrt {15} \)
B.3
C.4
D.15
Ta có:\(\left\{ {\begin{array}{*{20}{c}}{{z_1} = 2 + i}\\{{z_2} = 1 - 3i}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{c}}{|{z_1}{|^2} = {2^2} + 1 = 5}\\{|{z_2}{|^2} = 1 + {{( - 3)}^2} = 10}\end{array} \Rightarrow {{\left| {{z_1}} \right|}^2} + {{\left| {{z_2}} \right|}^2} = 15.} \right.\)
Đáp án cần chọn là: D
Tìm các số thực x,y thỏa mãn đẳng thức \[3x + y + 5xi = 2y - (x - y)i.\]
Cho hai số phức \[{z_1},\,\,{z_2}\] thỏa mãn \[{z_1}\overline {.{z_1}} = 4,\left| {{z_2}} \right| = 3\]. Giá trị biểu thức \[P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\;\] bằng:
Xét số phức z thỏa mãn \[\left| {z + 2 - i} \right| + \left| {z - 4 - 7i} \right| = 6\sqrt 2 \]. Gọi m,M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \[\left| {z - 1 + i} \right|.\]Tính P=m+M.
Tính môđun của số phức \[w = {\left( {1 - i} \right)^2}z\], biết số phức z có môđun bằng m.
Cho số phức z thỏa mãn \[2iz + \overline z = 1 - i.\]Phần thực của số phức z là:
Cho số phức \[z = 3 - 2i\]. Tìm phần thực và phần ảo của số phức \(\overline z \)
Gọi M,N lần lượt là các điểm biểu diễn số phức \[z = a + bi\] và \[z\prime = a\prime + b\prime i\]. Chọn câu đúng:
Cho số phức \[z = \frac{{m + 3i}}{{1 - i}},\,\,m \in \mathbb{R}\] Số phức \[w = {z^2}\;\] có \[\left| w \right| = 9\;\] khi các giá trị của m là:
Tính môđun của số phức z biết \[\bar z = \left( {4 - 3i} \right)\left( {1 + i} \right)\]
Trên C phương trình \[\frac{2}{{z - 1}} = 1 + i\;\] có nghiệm là: