IMG-LOGO

Câu hỏi:

19/07/2024 146

Cho hai số phức \[{z_1},{z_2}\;\] thỏa mãn \[\left| {{z_1}} \right| = 6,\left| {{z_2}} \right| = 2\]. Gọi M,N lần lượt là các điểm biểu diễn của số phức \[{z_1}\] và số phức \[i{z_2}_{}\]. Biết \(\widehat {MON} = {60^ \circ }\). Tính \[T = \left| {z_1^2 + 9z_2^2} \right|\]

A.\[T = 36\sqrt 2 \]

B. \[T = 36\sqrt 3 \]

Đáp án chính xác

C. \[T = 24\sqrt 3 \]

D. \[T = 18\]

Trả lời:

verified Giải bởi qa.haylamdo.com

Cho hai số phức z 1 , z 2   thỏa mãn  | z 1 | = 6 , | z 2 | = 2 . Gọi M,N lần lượt là các điểm biểu diễn của số phức  z 1  và số phức  i z 2 . Biết  góc M O N = 60 độ. Tính  T = ∣ z^2 1 + 9 z ^2 2 ∣ (ảnh 1)

Ta chọn \[{z_1} = 6\;\] có điểm biểu diễn là M(6;0).

Khi đó\[\widehat {MON} = {60^0}\]  nên chọn\[N\left( {1;\sqrt 3 } \right)\] (hình vẽ) biểu diễn số phức\[i{z_2}\]

Suy ra điểm\[N'\left( {\sqrt 3 ; - 1} \right)\] biểu diễn số phức\[{z_2}\] hay\[{z_2} = \sqrt 3 - i\]

Khi đó\[T = \left| {z_1^2 + 9z_2^2} \right| = \left| {{6^2} + 9{{\left( {\sqrt 3 - i} \right)}^2}} \right| = 36\sqrt 3 \]

Đáp án cần chọn là: B

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng phức gọi A,B,C lần lượt là các điểm biểu diễn của các số phức \[{z_1} = 3 + 2i;{z_2} = 3 - 2i;{z_3} = - 3 - 2i\]. Khẳng định nào sau đây là sai?

Xem đáp án » 05/07/2022 164

Câu 2:

Số phức z thỏa mãn \[\left| z \right| + z = 0\]. Khi đó:

Xem đáp án » 05/07/2022 149

Câu 3:

Hỏi có bao nhiêu số phức thỏa mãn đồng thời các điều kiện \[\left| {z - i} \right| = 5\] và \[{z^2}\] là số thuần ảo?

Xem đáp án » 05/07/2022 138

Câu 4:

Cho số phức \[z = 2 + 5i\]. Tìm số phức \[w = iz + \overline z \]

Xem đáp án » 05/07/2022 135

Câu 5:

Trong mặt phẳng phức, gọi A, B, C, D lần lượt là các điểm biểu diễn các số phức \[{z_1} = - 1 + i,\;{z_2} = 1 + 2i,{z_3} = 2 - i,{z_4} = - 3i\]. Gọi S diện tích tứ giác ABCD. Tính S.

Xem đáp án » 05/07/2022 132

Câu 6:

Cho số phức z thay đổi, luôn có \[\left| z \right| = 2\;\]. Khi đó tập hợp điểm biểu diễn số phức \[w = \left( {1 - 2i} \right)\overline z + 3i\;\] là

Xem đáp án » 05/07/2022 131

Câu 7:

Cho số phức  z  thỏa mãn \(\left| z \right| = \frac{{\sqrt 2 }}{2}\)và điểm A trong hình vẽ bên là điểm biểu diễn của z. Biết rằng trong hình vẽ bên, điểm biểu diễn của số phức \[{\rm{w}} = \frac{1}{{iz}}\] là một trong bốn điểm M,N,P,Q. Khi đó điểm biểu diễn của số phức w  là

Cho số phức  z  thỏa mãn  (ảnh 1)

Xem đáp án » 05/07/2022 130

Câu 8:

Cho các số phức \[{z_1} = 2,{z_2} = - 4i,{z_3} = 2 - 4i\] có điểm biểu diễn tương ứng trên mặt phẳng tọa độ Oxy là A, B, C. Diện tích tam giác ABC bằng

Xem đáp án » 05/07/2022 130

Câu 9:

Tìm điểm M biểu diễn số phức \[z = i - 2\]

Xem đáp án » 05/07/2022 126

Câu 10:

Gọi M và N lần lượt là điểm biểu diễn của các số phức \[{z_1};{z_2}\;\] khác 0. Khi đó khẳng định nào sau đây sai ?

Xem đáp án » 05/07/2022 125

Câu 11:

Cho số phức z thỏa mãn (2−i)z=7−i . Hỏi điểm biểu diễn của z là điểm nào trong các điểm M,N,P,Q ở hình dưới.

Cho số phức z thỏa mãn  (ảnh 1)

Xem đáp án » 05/07/2022 123

Câu 12:

Cho các số phức z thỏa mãn \[\left| z \right| = {\rm{ }}2\]và điểm A trong hình vẽ là điểm biểu diễn của z. Biết rằng trong hình vẽ, điểm biểu diễn số phức \[w = \frac{{ - 4}}{z}\] là một trong bốn điểm M, N, P, Q

Cho các số phức z thỏa mãn  (ảnh 1)

Khi đó điểm biểu diễn của số phức w là

Xem đáp án » 05/07/2022 123

Câu 13:

Cho số phức z thỏa mãn \[(1 + i)z = 3 - i\]. Hỏi điểm biểu diễn của z là điểm nào trong các điểm M,N,P,Q ở hình bên ?

Cho số phức z thỏa mãn  (ảnh 1)

Xem đáp án » 05/07/2022 121

Câu 14:

Số phức z được biểu diễn trên trên mặt phẳng như hình vẽ.

Số phức z được biểu diễn trên trên mặt phẳng như hình vẽ.Hỏi hình nào biểu diễn cho số phức  (ảnh 1)

Hỏi hình nào biểu diễn cho số phức \[w = \frac{i}{{\overline z }}\]

 

 

Xem đáp án » 05/07/2022 116

Câu 15:

Cho các số phức z thỏa mãn \[\left| {z + 1 - i} \right| = \left| {z - 1 + 2i} \right|.\]Tập hợp các điểm biểu diễn các số phức z trên mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó

Giả sử\[z = a + bi\left( {a,b \in R} \right)\]Ta có

\[\begin{array}{*{20}{l}}{\left| {z + 1 - i} \right| = \left| {z - 1 + 2i} \right| \Leftrightarrow \left| {\left( {a + 1} \right) + \left( {b - 1} \right)i} \right| = \left| {\left( {a - 1} \right) + \left( {b + 2} \right)i} \right|}\\{ \Leftrightarrow {{\left( {a + 1} \right)}^2} + {{\left( {b - 1} \right)}^2} = {{\left( {a - 1} \right)}^2} + {{\left( {b + 2} \right)}^2}}\\{ \Leftrightarrow 4a - 6b - 3 = 0}\end{array}\]

Vậy phương trình đường thẳng cần tìm là \[4x - 6y - 3 = 0\]

Xem đáp án » 05/07/2022 113

Câu hỏi mới nhất

Xem thêm »
Xem thêm »