Trong mặt phẳng phức, gọi A, B, C, D lần lượt là các điểm biểu diễn các số phức \[{z_1} = - 1 + i,\;{z_2} = 1 + 2i,{z_3} = 2 - i,{z_4} = - 3i\]. Gọi S diện tích tứ giác ABCD. Tính S.
A.\[S = \frac{{17}}{2}\]
B. \[S = \frac{{19}}{2}\]
C. \[S = \frac{{23}}{2}\]
D. \[S = \frac{{21}}{2}\]
Ta có: \[A\left( { - 1;1} \right);\,\,B\left( {1;2} \right);\,\,C\left( {2; - 1} \right);\,\,D\left( {0; - 3} \right)\]
Phương trình AB:
\[\frac{{x + 1}}{{1 + 1}} = \frac{{y - 1}}{{2 - 1}} \Leftrightarrow x + 1 = 2y - 2 \Leftrightarrow x - 2y + 3 = 0 \Rightarrow d\left( {O;AB} \right) = \frac{3}{{\sqrt 5 }};\,\,AB = \sqrt 5 \]
\[ \Rightarrow {S_{{\rm{\Delta }}OAB}} = \frac{1}{2}d\left( {O;AB} \right).AB = \frac{1}{2}.\frac{3}{{\sqrt 5 }}.\sqrt 5 = \frac{3}{2}\]
Phương trình BC:
\[\frac{{x - 1}}{{2 - 1}} = \frac{{y - 2}}{{ - 1 - 2}} \Leftrightarrow - 3x + 3 = y - 2 \Leftrightarrow 3x + y - 5 = 0 \Rightarrow d\left( {O;BC} \right) = \frac{5}{{\sqrt {10} }};\,\,BC = \sqrt {10} \]
\[ \Rightarrow {S_{{\rm{\Delta }}OBC}} = \frac{1}{2}d\left( {O;BC} \right).BC = \frac{1}{2}.\frac{5}{{\sqrt {10} .\sqrt {10} }} = \frac{5}{2}\]
Phương trình CD:
\[\frac{{x - 2}}{{0 - 2}} = \frac{{y + 1}}{{ - 3 + 1}} \Leftrightarrow - 2x + 4 = - 2y - 2 \Leftrightarrow x - y - 3 = 0 \Rightarrow d\left( {O;CD} \right) = \frac{3}{{\sqrt 2 }};\,\,CD = 2\sqrt 2 \]
\[ \Rightarrow {S_{{\rm{\Delta }}OCD}} = \frac{1}{2}.\frac{3}{{\sqrt 2 }}.2\sqrt 2 = 3\]
Phương trình AD:\[\frac{{x + 1}}{{0 + 1}} = \frac{{y - 1}}{{ - 3 - 1}} \Leftrightarrow - 4x - 4 = y - 1 \Leftrightarrow 4x + y + 3 = 0 \Rightarrow d\left( {O;AD} \right) = \frac{3}{{\sqrt {17} }};\,\,AD = \sqrt {17} \]
\[ \Rightarrow {S_{{\rm{\Delta }}OAD}} = \frac{1}{2}.\frac{3}{{\sqrt {17} }}.\sqrt {17} = \frac{3}{2}\]
Vậy\[S = {S_{{\rm{\Delta }}OAB}} + {S_{{\rm{\Delta }}OBC}} + {S_{{\rm{\Delta }}OCD}} + {S_{{\rm{\Delta }}OAD}} = \frac{{17}}{2}\]
Đáp án cần chọn là: A
Trong mặt phẳng phức gọi A,B,C lần lượt là các điểm biểu diễn của các số phức \[{z_1} = 3 + 2i;{z_2} = 3 - 2i;{z_3} = - 3 - 2i\]. Khẳng định nào sau đây là sai?
Cho hai số phức \[{z_1},{z_2}\;\] thỏa mãn \[\left| {{z_1}} \right| = 6,\left| {{z_2}} \right| = 2\]. Gọi M,N lần lượt là các điểm biểu diễn của số phức \[{z_1}\] và số phức \[i{z_2}_{}\]. Biết \(\widehat {MON} = {60^ \circ }\). Tính \[T = \left| {z_1^2 + 9z_2^2} \right|\]
Hỏi có bao nhiêu số phức thỏa mãn đồng thời các điều kiện \[\left| {z - i} \right| = 5\] và \[{z^2}\] là số thuần ảo?
Cho số phức \[z = 2 + 5i\]. Tìm số phức \[w = iz + \overline z \]
Cho số phức z thay đổi, luôn có \[\left| z \right| = 2\;\]. Khi đó tập hợp điểm biểu diễn số phức \[w = \left( {1 - 2i} \right)\overline z + 3i\;\] là
Cho các số phức \[{z_1} = 2,{z_2} = - 4i,{z_3} = 2 - 4i\] có điểm biểu diễn tương ứng trên mặt phẳng tọa độ Oxy là A, B, C. Diện tích tam giác ABC bằng
Cho số phức z thỏa mãn \(\left| z \right| = \frac{{\sqrt 2 }}{2}\)và điểm A trong hình vẽ bên là điểm biểu diễn của z. Biết rằng trong hình vẽ bên, điểm biểu diễn của số phức \[{\rm{w}} = \frac{1}{{iz}}\] là một trong bốn điểm M,N,P,Q. Khi đó điểm biểu diễn của số phức w là
Cho các số phức z thỏa mãn \[\left| z \right| = {\rm{ }}2\]và điểm A trong hình vẽ là điểm biểu diễn của z. Biết rằng trong hình vẽ, điểm biểu diễn số phức \[w = \frac{{ - 4}}{z}\] là một trong bốn điểm M, N, P, Q
Khi đó điểm biểu diễn của số phức w là
Số phức z được biểu diễn trên trên mặt phẳng như hình vẽ.
Hỏi hình nào biểu diễn cho số phức \[w = \frac{i}{{\overline z }}\]
Gọi M và N lần lượt là điểm biểu diễn của các số phức \[{z_1};{z_2}\;\] khác 0. Khi đó khẳng định nào sau đây sai ?
Cho số phức z thỏa mãn (2−i)z=7−i . Hỏi điểm biểu diễn của z là điểm nào trong các điểm M,N,P,Q ở hình dưới.
Cho số phức z thỏa mãn \[(1 + i)z = 3 - i\]. Hỏi điểm biểu diễn của z là điểm nào trong các điểm M,N,P,Q ở hình bên ?
Cho các số phức z thỏa mãn \[\left| {z + 1 - i} \right| = \left| {z - 1 + 2i} \right|.\]Tập hợp các điểm biểu diễn các số phức z trên mặt phẳng tọa độ là một đường thẳng. Viết phương trình đường thẳng đó
Giả sử\[z = a + bi\left( {a,b \in R} \right)\]Ta có
\[\begin{array}{*{20}{l}}{\left| {z + 1 - i} \right| = \left| {z - 1 + 2i} \right| \Leftrightarrow \left| {\left( {a + 1} \right) + \left( {b - 1} \right)i} \right| = \left| {\left( {a - 1} \right) + \left( {b + 2} \right)i} \right|}\\{ \Leftrightarrow {{\left( {a + 1} \right)}^2} + {{\left( {b - 1} \right)}^2} = {{\left( {a - 1} \right)}^2} + {{\left( {b + 2} \right)}^2}}\\{ \Leftrightarrow 4a - 6b - 3 = 0}\end{array}\]
Vậy phương trình đường thẳng cần tìm là \[4x - 6y - 3 = 0\]