Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 9\] và đường thẳng \[d:x - 1 = \frac{{y - 2}}{2} = \frac{{z - 4}}{3}\]. (d) cắt (S) tại hai điểm phân biệt A và B. Khi đó AB bằng:
A.\[AB = \frac{{\sqrt {126} }}{7}\]
B. \[AB = \frac{{\sqrt {123} }}{7}\]
C. \[AB = \sqrt {\frac{{126}}{7}} \]
D. \[AB = \frac{{\sqrt {129} }}{7}\]
Tham số hóa phương trình đường thẳng d ta được: d:\(\left\{ {\begin{array}{*{20}{c}}{x = t + 1}\\{y = 2 + 2t}\\{z = 4 + 3t}\end{array}} \right.\)
Giả sử A là giao điểm của (d) và (P).
Vì \[A \in d:\left\{ {\begin{array}{*{20}{c}}{x = t + 1}\\{y = 2 + 2t}\\{z = 4 + 3t}\end{array}} \right.\] nên ta có:\[A\left( {t + 1;2 + 2t;4 + 3t} \right)\]
Mặt khác\[A \in (S)\] nên ta có
\[{(t + 1 - 1)^2} + {(2 + 2t + 2)^2} + {(4 + 3t - 3)^2} = 9\]
\[ \Leftrightarrow {t^2} + {(4 + 2t)^2} + {(1 + 3t)^2} = 9\]
\[ \Leftrightarrow 14{t^2} + 22t + 8 = 0\]
\(\begin{array}{l} \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{t = - 1}\\{t = - \frac{4}{7}}\end{array}} \right. \Rightarrow \left[ {\begin{array}{*{20}{c}}{A(0;0;1)}\\{B\left( {\frac{3}{7};\frac{6}{7};\frac{{16}}{7}} \right)}\end{array}} \right.\\ \Rightarrow AB = \sqrt {{{\left( {\frac{3}{7}} \right)}^2} + {{\left( {\frac{6}{7}} \right)}^2} + {{\left( {\frac{{16}}{7} - 1} \right)}^2}} = \frac{{\sqrt {126} }}{7}\end{array}\)
Đáp án cần chọn là: A
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;−2;3) và đường thẳng d có phương trình \[\frac{{x + 1}}{2} = \frac{{y - 2}}{1} = \frac{{z + 3}}{{ - 1}}\]. Tính đường kính của mặt cầu (S) có tâm A và tiếp xúc với đường thẳng d.
Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu có điểm chung với trục Oz là:
Trong không gian Oxyz, cho 3 điểm A(0;1;1),B(3;0;−1),C(0;21;−19) và mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 1\]. Điểm M thuộc mặt cầu (S) sao cho tổng \[3M{A^2} + 2M{B^2} + M{C^2}\;\] đạt giá trị nhỏ nhất, khi đó, độ dài vectơ \[\overrightarrow {OM} \;\] là
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ có phương trình x=y=z. Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu không có hai điểm chung phân biệt với Δ là:
Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu (S) có tâm I(2;0;1) và tiếp xúc với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z - 2}}{1}\] là:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình
\[{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 50\]. Trong số các đường thẳng sau, mặt cầu (S) tiếp xúc với đường thẳng nào.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {(y + 1)^2} + {z^2} = {R^2}\]. Điều kiện của bán kính R để trục Ox tiếp xúc với (S) là:
Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu (S) có tâm I(2;0;1) và tiếp xúc với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z - 2}}{1}\;\] là:
Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu (S) có tâm I(3;−2;0) và cắt trục Oy tại hai điểm A,B mà AB=8 là
Trong không gian Oxyz, cho điểm E(2;1;3), mặt phẳng \[(P):2x + 2y - z - 3 = 0\]và mặt cầu \[(S):{(x - 3)^2} + {(y - 2)^2} + {(z - 5)^2} = 36\]. Gọi \[\Delta \] là đường thẳng đi qua E, nằm trong (P) và cắt (S) tại hai điểm có khoảng cách nhỏ nhất. Phương trình của \[\Delta \] là:
Trong không gian với hệ tọa độ Oxyz, cho điểm I(3;4;−2). Lập phương trình mặt cầu tâm I và tiếp xúc với trục Oz.
Trong không gian Oxyz, cho hai mặt phẳng \[(\alpha ):x - my + z + 6m + 3 = 0\;\]và \[(\beta ):mx + y - mz + 3m - 8 = 0\]; hai mặt phẳng này cắt nhau theo giao tuyến là đường thẳng \[\Delta \]. Gọi \[\Delta '\] là hình chiếu của \[\Delta \] lên mặt phẳng Oxy. Biết rằng khi m thay đổi thì đường thẳng \[\Delta '\] luôn tiếp xúc với một mặt cầu cố định có tâm I(a;b;c) thuộc mặt phẳng OxyOxy. Tính giá trị biểu thức \[P = 10{a^2} - {b^2} + 3{c^2}.\]
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình \[{(x + 1)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]. Phương trình nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua trục Oz.
Trong không gian Oxyz, cho điểm S(−2;1;−2) nằm trên mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} = 9\]. Từ điểm S kẻ ba dây cung SA,SB,SC với mặt cầu (S) có độ dài bằng nhau và đôi một tạo với nhau góc 600. Dây cung AB có độ dài bằng:
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = t}\\{z = t}\end{array}} \right.\)và \(d':\left\{ {\begin{array}{*{20}{c}}{x = t'}\\{y = 3 - t'}\\{z = 0}\end{array}} \right.\). Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của hai đường thẳng d và d′ là: