Trong không gian Oxyz, cho hai mặt phẳng \[(\alpha ):x - my + z + 6m + 3 = 0\;\]và \[(\beta ):mx + y - mz + 3m - 8 = 0\]; hai mặt phẳng này cắt nhau theo giao tuyến là đường thẳng \[\Delta \]. Gọi \[\Delta '\] là hình chiếu của \[\Delta \] lên mặt phẳng Oxy. Biết rằng khi m thay đổi thì đường thẳng \[\Delta '\] luôn tiếp xúc với một mặt cầu cố định có tâm I(a;b;c) thuộc mặt phẳng OxyOxy. Tính giá trị biểu thức \[P = 10{a^2} - {b^2} + 3{c^2}.\]
A.P=56.
B.P=9.
C.P=41.
D.P=73.
Bước 1: Biểu diễn M và vectơ chỉ phương của \(\Delta \) theo m.
Mặt phẳng\[(\alpha ):x - my + z + 6m - 3z = 0\] có một vectơ pháp tuyến là
\[\overrightarrow {{n_1}} = (1; - m;1)\], và mặt phẳng\[(\beta ):mx + y - mz + 3m - 8 = (\alpha ) \cap (\beta )\]
\[\overrightarrow {{n_1}} = (1; - m;1)\], và mặt phẳng\[(\beta ):mx + y - mz\] có một vectơ pháp tuyến là
\[\overrightarrow {{n_2}} = (m;1; - m).\] Ta có\[M\left( { - 3m + \frac{4}{m} - 3;0; - 3m - \frac{4}{m}} \right) \in {\rm{\Delta }} = \left( \alpha \right) \cap \left( \beta \right)\]
Do đó Δ có một vectơ chỉ phương là\[\vec u = \left[ {\overrightarrow {{n_1}} ;\overrightarrow {{n_2}} } \right] = \left( {{m^2} - 1;2m;{m^2} + 1} \right)\]
Bước 2: Gọi (P) là mặt phẳng chứa đường thẳng Δ và vuông góc với mặt phẳng (Oxy). Tìm c.
Gọi (P) là mặt phẳng chứa đường thẳng Δ và vuông góc với mặt phẳng (Oxy). Khi đó (P) có một vectơ pháp tuyến là\[\vec n = [\vec u;\vec k] = \left( {2m;1 - {m^2};0} \right)\]
Phương trình mặt phẳng (P) là :\[2mx + \left( {1 - {m^2}} \right)y + 6{m^2} + 6m - 8 = 0\]
Vì\[I(a;b;c) \in (Oxy)\] nên I(a;b;0).
Bước 3: Theo giả thiết ta suy ra (P) là tiếp diện của mặt cầu \[(S) \Rightarrow d(I;(P)) = R\]. Tìm a và b
Theo giả thiết ta suy ra (P) là tiếp diện của mặt cầu\[(S) \Rightarrow d(I;(P)) = R\]
\[ \Leftrightarrow \frac{{\left| {2ma + \left( {1 - {m^2}} \right)b + 6{m^2} + 6m - 8} \right|}}{{\sqrt {4{m^2} + {{\left( {1 - {m^2}} \right)}^2}} }} = R > 0\]
\[ \Leftrightarrow \frac{{\left| {2m(a + 3) + (6 - b){m^2} + b - 8} \right|}}{{{m^2} + 1}} = R > 0\]
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2m(a + 3) + (6 - b){m^2} + b - 8 = R({m^2} + 1)}\\{2m(a + 3) + (6 - b){m^2} + b - 8 = - R({m^2} + 1)}\end{array}} \right.\)
\( \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{2(a + 3) = 0}\\{6 - b = R}\\{b - 8 = R}\\{R > 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{2(a + 3) = 0}\\{6 - b = - R}\\{b - 8 = - R}\\{R > 0}\end{array}} \right.}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\left\{ {\begin{array}{*{20}{c}}{a = - 3 = 0}\\{6 - b = b - 8}\\{ - R = 6 - b < 0}\end{array}} \right.}\\{\left\{ {\begin{array}{*{20}{c}}{a = - 3}\\{6 - b = b - 8}\\{R = 6 - b > 0}\end{array}} \right.}\end{array}} \right.\)</>
\( \Rightarrow \left\{ {\begin{array}{*{20}{c}}{a = - 3}\\{b = 7}\end{array}} \right.\)
Vậy I(−3;7;0), do đó \[P = 10{a^2} - {b^2} + 3{c^2} = 41\]
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;−2;3) và đường thẳng d có phương trình \[\frac{{x + 1}}{2} = \frac{{y - 2}}{1} = \frac{{z + 3}}{{ - 1}}\]. Tính đường kính của mặt cầu (S) có tâm A và tiếp xúc với đường thẳng d.
Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu có điểm chung với trục Oz là:
Trong không gian Oxyz, cho 3 điểm A(0;1;1),B(3;0;−1),C(0;21;−19) và mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 1} \right)^2} + {\left( {z - 1} \right)^2} = 1\]. Điểm M thuộc mặt cầu (S) sao cho tổng \[3M{A^2} + 2M{B^2} + M{C^2}\;\] đạt giá trị nhỏ nhất, khi đó, độ dài vectơ \[\overrightarrow {OM} \;\] là
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng Δ có phương trình x=y=z. Trong bốn phương trình mặt cầu dưới đây, phương trình mặt cầu không có hai điểm chung phân biệt với Δ là:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình
\[{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 50\]. Trong số các đường thẳng sau, mặt cầu (S) tiếp xúc với đường thẳng nào.
Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu (S) có tâm I(2;0;1) và tiếp xúc với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z - 2}}{1}\] là:
Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu (S) có tâm I(2;0;1) và tiếp xúc với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{y}{2} = \frac{{z - 2}}{1}\;\] là:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{x^2} + {(y + 1)^2} + {z^2} = {R^2}\]. Điều kiện của bán kính R để trục Ox tiếp xúc với (S) là:
Trong không gian với hệ tọa độ Oxyz, phương trình mặt cầu (S) có tâm I(3;−2;0) và cắt trục Oy tại hai điểm A,B mà AB=8 là
Trong không gian Oxyz, cho điểm E(2;1;3), mặt phẳng \[(P):2x + 2y - z - 3 = 0\]và mặt cầu \[(S):{(x - 3)^2} + {(y - 2)^2} + {(z - 5)^2} = 36\]. Gọi \[\Delta \] là đường thẳng đi qua E, nằm trong (P) và cắt (S) tại hai điểm có khoảng cách nhỏ nhất. Phương trình của \[\Delta \] là:
Trong không gian với hệ tọa độ Oxyz, cho điểm I(3;4;−2). Lập phương trình mặt cầu tâm I và tiếp xúc với trục Oz.
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \[(S):{(x - 1)^2} + {(y + 2)^2} + {(z - 3)^2} = 9\] và đường thẳng \[d:x - 1 = \frac{{y - 2}}{2} = \frac{{z - 4}}{3}\]. (d) cắt (S) tại hai điểm phân biệt A và B. Khi đó AB bằng:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình \[{(x + 1)^2} + {(y - 1)^2} + {(z - 2)^2} = 4\]. Phương trình nào sau đây là phương trình của mặt cầu đối xứng với mặt cầu (S) qua trục Oz.
Trong không gian Oxyz, cho điểm S(−2;1;−2) nằm trên mặt cầu \[\left( S \right):{x^2} + {y^2} + {z^2} = 9\]. Từ điểm S kẻ ba dây cung SA,SB,SC với mặt cầu (S) có độ dài bằng nhau và đôi một tạo với nhau góc 600. Dây cung AB có độ dài bằng:
Trong không gian với hệ tọa độ Oxyz, cho hai đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2t}\\{y = t}\\{z = t}\end{array}} \right.\)và \(d':\left\{ {\begin{array}{*{20}{c}}{x = t'}\\{y = 3 - t'}\\{z = 0}\end{array}} \right.\). Phương trình mặt cầu có đường kính là đoạn thẳng vuông góc chung của hai đường thẳng d và d′ là: