Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt phẳng qua điểm M(2,−3,4) và nhận \[\overrightarrow n = \left( { - 2,4,1} \right)\;\]làm vectơ pháp tuyến.
A.\[2x - 3y + 4z + 12 = 0\]
B. \[2x - 4y - z - 12 = 0\]
C. \[2x - 4y - z + 10 = 0\]
D. \[ - 2x + 4y + z + 11 = 0\]
Phương trình mặt phẳng qua điểm\[M\left( {2, - 3,4} \right)\]và nhận \[\vec n = ( - 2,4,1)\]làm vectơ pháp tuyến là:
\[ - 2(x - 2) + 4(y + 3) + (z - 4) = 0 \Leftrightarrow - 2x + 4y + z + 12 = 0 \Leftrightarrow 2x - 4y - z - 12 = 0\]
Đáp án cần chọn là: B
Cho hình lập phương ABCD.A′B′C′D′. Côsin góc giữa hai mặt phẳng (A′BC) và (ABC′) bằng:
Trong không gian Oxyz, cho ba điểm A(1,0,0),B(0,1,0) và C(0,0,1) . Phương trình mặt phẳng (P) đi qua ba điểm A,B,C là:
Viết phương trình mặt phẳng (P) đi qua điểm M(1;0;−2) và vuông góc với hai mặt phẳng (Q),(R) cho trước với \[\left( Q \right):x + 2y - 3z + 1 = 0\;\]và \[\left( R \right):2x - 3y + z + 1 = 0\;\].
Trong không gian với hệ tọa độ Oxyz, cho điểm M(1;1;2). Hỏi có bao nhiêu mặt phẳng (P) đi qua M và cắt các trục x′Ox,y′Oy,z′Oz lần lượt tại các điểm A,B,C sao cho \[OA = OB = OC \ne 0\]?
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(4,−1,2), B(2,−3,−2). Phương trình nào dưới đây là phương trình mặt phẳng trung trực của đoạn thẳng AB.
Cho mặt phẳng (P) có phương trình \[x + 3y - 2z + 1 = 0\;\] và mặt phẳng (Q) có phương trình \[x + y + 2z - 1 = 0\]. Trong các mặt phẳng tọa độ và mặt phẳng (Q) , xác định mặt phẳng tạo với (P) góc có số đo lớn nhất.
Trong không gian Oxyz, cho mặt phẳng \[\left( P \right):x - y + 3 = 0\]. Vec-tơ nào sau đây không là vecto pháp tuyến của mặt phẳng (P) .
Trong không gian với hệ tọa độ Oxyz, cho A(1,−3,2),B(1,0,1),C(2,3,0). Viết phương trình mặt phẳng (ABC) .
Trong không gian với hệ trục Oxyz, mặt phẳng đi qua điểm A(1,3,−2) và song song với mặt phẳng \[(P):2x - y + 3z + 4 = 0\] là:
Trong không gian Oxyz, cho hai mặt phẳng \[\left( P \right):3x - my - z + 7 = 0,\left( Q \right):6x + 5y - 2z - 4 = 0.\] Hai mặt phẳng (P và (Q) song song với nhau khi m bằng
Trong không gian với hệ toạ độ Oxyz, cho hai mặt phẳng \[\left( P \right):x + 2y + 2z + 11 = 0\;\]và \[\left( Q \right):x + 2y + 2z + 2 = 0\;\]. Tính khoảng cách giữa (P) và (Q).
Cho hai điểm M(1;−2;−4),M′(5;−4;2). Biết M′ là hình chiếu của M lên mặt phẳng (P). Khi đó, phương trình (P) là:
Cho hai mặt phẳng (P) và (Q) lần lượt có phương trình \[x + 2y - 2z + 1 = 0\;\] và \[x - 2y + 2z - 1 = 0\]. Gọi (S) là quỹ tích các điểm cách đều hai mặt phẳng (P) và (Q). Tìm khẳng định đúng.
Viết phương trình mặt phẳng (P) song song với mặt phẳng \[\left( Q \right):x + y - z - 2 = 0\;\]và cách (Q) một khoảng là \(2\sqrt 3 \).
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \[\left( P \right):mx + y - 2z - 2 = 0\;\]và \[\left( Q \right):x - 3y + mz + 5 = 0\]. Tìm tất cả các giá trị thực của m để hai mặt phẳng đã cho vuông góc với nhau.