IMG-LOGO

Câu hỏi:

22/07/2024 142

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+2y−3z+4=0 và đường thẳng\[d:\frac{{x + 2}}{1} = \frac{{y - 2}}{1} = \frac{z}{{ - 1}}.\]Đường thẳng Δ nằm trong (P) đồng thời cắt và vuông góc với d có phương trình:

A.\[{\rm{\Delta }}:\frac{{x - 3}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 1}}{{ - 1}}\]

B. \[{\rm{\Delta }}:\frac{{x + 3}}{1} = \frac{{y + 1}}{{ - 2}} = \frac{{z - 1}}{{ - 1}}\]

C. \[{\rm{\Delta }}:\frac{{x + 3}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 1}}{{ - 1}}\]

Đáp án chính xác

D. \[{\rm{\Delta }}:\frac{{x + 3}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z + 1}}{{ - 1}}\]

Trả lời:

verified Giải bởi qa.haylamdo.com

Mặt phẳng (P) có VTPT\[\overrightarrow {{n_P}} = \left( {1;2; - 3} \right)\]; d có VTCP\[\overrightarrow {{u_d}} = \left( {1;1; - 1} \right)\]

Gọi \[A = d \cap \left( P \right)\] tọa độ điểm A thỏa mãn hệ

\(\left\{ {\begin{array}{*{20}{c}}{\frac{{x + 2}}{1} = \frac{{y - 2}}{1} = \frac{z}{{ - 1}}}\\{x + 2y - 3z + 4 = 0}\end{array}} \right. \Rightarrow A( - 3;1;1)\)

Do \[{\rm{\Delta }}\] nằm trong (P) và vuông góc với d nên có VTCP\[\overrightarrow {{u_{\rm{\Delta }}}} = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{u_d}} } \right] = \left( {1; - 2; - 1} \right)\]

Khi đó đường thẳng \[{\rm{\Delta }}\] được xác định là đi qua A(−3;1;1) và có VTCP \[\overrightarrow {{u_{\rm{\Delta }}}} = \left[ {\overrightarrow {{n_P}} ,\overrightarrow {{u_d}} } \right] = \left( {1; - 2; - 1} \right)\] nên có phương trình\[{\rm{\Delta }}:\frac{{x + 3}}{1} = \frac{{y - 1}}{{ - 2}} = \frac{{z - 1}}{{ - 1}}\]

Đáp án cần chọn là: C

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):2x−2y−z+7=0 và điểm A(1;1;−2). Điểm H(a;b;c) là hình chiếu vuông góc của A trên (P). Tổng a+b+c bằng:

Xem đáp án » 06/07/2022 244

Câu 2:

Đề thi THPT QG - 2021 - mã 101

Trong không gian Oxyz, cho điểm M(−1;3;2) và mặt phẳng (P):x−2y+4z+1=0. Đường thẳng đi qua M và vuông góc với (P) có phương trình là

Xem đáp án » 06/07/2022 230

Câu 3:

Cho đường thẳng \[d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 2}} = \frac{z}{3}\] và mặt phẳng \[\left( P \right):x + y - z - 3 = 0\]. Tọa độ giao điểm của d và (P) là:

Xem đáp án » 06/07/2022 207

Câu 4:

Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua điểm A(1;2;3) và vuông góc với mặt phẳng \[(\alpha ):4x + 3y - 7z + 1 = 0\]. Phương trình tham số của d là:

Xem đáp án » 06/07/2022 200

Câu 5:

Trong không gian Oxyz, cho hai điểm A(2;−2;4);B(−3;3;−1) và mặt phẳng (P):2x−y+2z−8=0. Xét điểm M là điểm thay đổi thuộc (P), giá trị nhỏ nhất của \[2M{A^2} + 3M{B^2}\;\]bằng:

Xem đáp án » 06/07/2022 193

Câu 6:

Trong không gian Oxyz, gọi M′ là điểm đối xứng của điểm M(2;0;1) qua đường thẳng \[\Delta :\frac{x}{1} = \frac{{y + 2}}{2} = \frac{{z - 1}}{1}\]. Tính khoảng cách từ điểm M′ đến mặt phẳng (Oxy).

Xem đáp án » 06/07/2022 190

Câu 7:

Trong không gian với hệ tọa độ Oxyz, cho cho mặt phẳng (P):x−2y+3z−1=0 và đường thẳng \[d:\frac{{x - 1}}{3} = \frac{{y - 2}}{3} = \frac{{z - 3}}{1}\]. Khẳng định nào sau đây đúng:

Xem đáp án » 06/07/2022 188

Câu 8:

Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\left\{ {\begin{array}{*{20}{c}}{x = 2 - 2t}\\{y = 0}\\{z = t}\end{array}} \right.\). Gọi d′ là đường thẳng đối xứng với d qua mặt phẳng (Oxy). Biết phương trình đó có dạng: \(d':\left\{ {\begin{array}{*{20}{c}}{x = a + bt}\\{y = c}\\{z = t}\end{array}} \right.\)

Tính a+b+c.

Xem đáp án » 06/07/2022 182

Câu 9:

Trong không gian với hệ tọa độ Oxyz, phương trình mặt phẳng (P) đi qua hai điểm A(1;1;2),B(0;−1;1)  và song song với đường thẳng \[d:\frac{{x - 1}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{z}{2}\;\] là:

Xem đáp án » 06/07/2022 171

Câu 10:

Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm M(2;1;1), cắt và vuông góc với đường thẳng \[\Delta :\frac{{x - 2}}{{ - 2}} = \frac{{y - 8}}{1} = \frac{z}{1}\]. Tìm tọa độ giao điểm của d và mặt phẳng (Oyz).

Xem đáp án » 06/07/2022 153

Câu 11:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x+2y=0. Phương trình nào sau đây là phương trình đường thẳng qua A(−1;3;−4) cắt trục Ox và song song với mặt phẳng (P):

Xem đáp án » 06/07/2022 144

Câu 12:

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P):x−y−z−1=0 và đường thẳng \[d:\frac{{x + 1}}{2} = \frac{{y - 1}}{1} = \frac{{z - 2}}{3}\].   Phương trình đường thẳng Δ  qua A(1;1;−2) vuông góc với d và song song với (P) là:

Xem đáp án » 06/07/2022 138

Câu 13:

Trong không gian Oxyz, cho hình lăng trụ tam giác đều ABC.A′B′C′ có \[A\prime (\sqrt 3 ; - 1;1),\] hai đỉnh B,C thuộc trục Oz và AA′=1 (C không trùng với O). Biết véc tơ \[\overrightarrow u = \left( {a;b;2} \right)\;\]với \[a,b \in R\mathbb{R}\] là một véc tơ chỉ phương của đường thẳng A′C. Tính \[T = {a^2} + {b^2}\].

Xem đáp án » 06/07/2022 138

Câu 14:

Trong không gian Oxyz cho hai mặt phẳng \[\left( P \right):2x + y - z - 3 = 0\;\] và \[\left( Q \right):x + y + z - 1 = 0\]. Phương trình chính tắc đường thẳng giao tuyến của hai mặt phẳng (P) và (Q) là:

Xem đáp án » 06/07/2022 133

Câu 15:

Cho \[d:\frac{{x + 1}}{2} = \frac{{y - 3}}{m} = \frac{{z - 1}}{{m - 2}};\,\,\,(P):x + 3y + 2z - 5 = 0\]. Tìm m để d và (P) vuông góc với nhau.

Xem đáp án » 06/07/2022 132

Câu hỏi mới nhất

Xem thêm »
Xem thêm »