Do \[{x^2} + 8 = x(x + 2) - 2(x + 2) + 12\] nên \[({x^2} + 8)\,\, \vdots \,\,(x + 2) \Leftrightarrow 12\,\, \vdots \,\,(x + 2)\]
Do đó \[(x + 2) \in {\rm{\{ }} - 12;\, - 6;\, - 4;\, - 3;\, - 2;\, - 1;\,\,1;\,\,2;\,\,3;\,\,4;\,\,6;\,\,12\} \]
Vậy \[x \in {\rm{\{ }} - 14;\, - 8;\, - 6;\, - 5;\, - 4;\, - 3;\,\, - 1;\,\,0;\,\,1;\,\,2;\,\,4;\,\,10\} \]
Cho số \(a = - {10^8} + {2^3}.\) Hỏi số a có chia hết cho \( - 9\) không?
Cho a, b là các số nguyên. Chứng minh rằng nếu (6a + 11b) chia hết cho 31 thì (a + 7b) cũng chia hết cho 31. Điều ngược lại có đúng không?
Chứng minh rằng: \(S = 2 + {2^2} + {2^3} + {2^4} + {2^5} + {2^6} + {2^7} + {2^8}\) chia hết cho \( - 6\).
Cho \[a,{\rm{ }}b\] là các số nguyên. Chứng minh rằng \[5a{\rm{ }} + {\rm{ }}2b\] chia hết cho 17 khi và chỉ khi \[9a{\rm{ }} + {\rm{ }}7b\] chia hết cho 17.
Chứng minh rằng: \(S = 3 + {3^2} + {3^3} + {3^4} + {3^5} + {3^6} + {3^7} + {3^8} + {3^9}\) chia hết cho \(\left( { - 39} \right).\)