Cho ∆ABC cân tại A, có AM là đường trung tuyến. Khẳng định nào sau đây sai?
A. ∆ABM = ∆ACM;
Đáp án đúng là: D
Vì AM là đường trung tuyến của ∆ABC nên M là trung điểm BC.
Suy ra MB = MC.
Do đó đáp án C đúng.
Xét ∆ABM và ∆ACM, có:
AB = AC (do ∆ABC cân tại A).
AM là cạnh chung.
MB = MC (chứng minh trên).
Do đó ∆ABM = ∆ACM (c.c.c).
Suy ra đáp án A đúng.
Ta có ∆ABM = ∆ACM (chứng minh trên).
Suy ra và (các cặp góc tương ứng).
Do đó đáp án D sai.
Đến đây ta có thể chọn đáp án D.
Ta có (hai góc kề bù).
Suy ra .
Do đó .
Khi đó .
Suy ra AM ⊥ BC.
Do đó đáp án B đúng.
Vậy ta chọn đáp án D.
Cho ∆ABC có đường trung tuyến AD. Trên đoạn thẳng AD lấy hai điểm E, G sao cho AG = GE = ED. Trọng tâm của ∆ABC là điểm:
Cho ∆ABC có hai đường trung tuyến BE và CF cắt nhau tại G. Biết BE = CF. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC có ba đường trung tuyến AX, BY, CZ cắt nhau tại G. Biết GA = GB = GC. Hãy so sánh GX, GY và GZ.
Cho ∆ABC. Trên cạnh BC lấy điểm G sao cho BG = 2GC. Lấy điểm D sao cho C là trung điểm của AD. Gọi E là trung điểm BD. Khẳng định nào sau đây sai?
Cho ∆ABC, D là trung điểm của AC. Trên cạnh BD lấy điểm E sao cho BE = 2ED. Lấy điểm F thuộc tia đối của tia DE sao cho BF = 2BE. Gọi K là trung điểm của CF và G là giao điểm của EK với AC. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC có AD, BE, CF là ba đường trung tuyến và trọng tâm G. Đẳng thức nào sau đây đúng?
Cho ∆ABC có hai đường trung tuyến BM, CN cắt nhau tại G.
So sánh tổng BM + CN và .
Cho ∆ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC có G là trọng tâm như hình bên.
Tìm x, biết AG = 4x + 6 và AM = 9x.