A. BG = GM;
Đáp án đúng là: D
Ta xét đáp án A:
Ta có DM = DG. Suy ra GM = 2GD.
Lại có G là giao điểm của hai trung tuyến BD và CE.
Suy ra G là trọng tâm của ∆ABC.
Do đó (tính chất trọng tâm)
Nên GB = 2GD.
Khi đó ta có BG = 2GD = GM.
Do đó đáp án A đúng.
Ta xét đáp án B:
Chứng minh tương tự đáp án A, ta được CG = GN.
Xét ∆GMN và ∆GBC, có:
GM = GB (chứng minh trên).
CG = GN (chứng minh trên).
(hai góc đối đỉnh).
Do đó ∆GMN = ∆GBC (c.g.c).
Suy ra MN = BC (cặp cạnh tương ứng).
Do đó đáp án B đúng.
Ta xét đáp án C:
Ta có ∆GMN = ∆GBC (chứng minh trên).
Suy ra (cặp góc tương ứng).
Mà hai góc này ở vị trí so le trong.
Ta suy ra MN // BC.
Do đó đáp án C đúng.
Vậy ta chọn đáp án D.
Cho ∆ABC cân tại A, có AM là đường trung tuyến. Khẳng định nào sau đây sai?
Cho ∆ABC có đường trung tuyến AD. Trên đoạn thẳng AD lấy hai điểm E, G sao cho AG = GE = ED. Trọng tâm của ∆ABC là điểm:
Cho ∆ABC có hai đường trung tuyến BE và CF cắt nhau tại G. Biết BE = CF. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC có ba đường trung tuyến AX, BY, CZ cắt nhau tại G. Biết GA = GB = GC. Hãy so sánh GX, GY và GZ.
Cho ∆ABC. Trên cạnh BC lấy điểm G sao cho BG = 2GC. Lấy điểm D sao cho C là trung điểm của AD. Gọi E là trung điểm BD. Khẳng định nào sau đây sai?
Cho ∆ABC, D là trung điểm của AC. Trên cạnh BD lấy điểm E sao cho BE = 2ED. Lấy điểm F thuộc tia đối của tia DE sao cho BF = 2BE. Gọi K là trung điểm của CF và G là giao điểm của EK với AC. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC có hai đường trung tuyến BM, CN cắt nhau tại G.
So sánh tổng BM + CN và .
Cho ∆ABC có AD, BE, CF là ba đường trung tuyến và trọng tâm G. Đẳng thức nào sau đây đúng?
Cho ∆ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC có G là trọng tâm như hình bên.
Tìm x, biết AG = 4x + 6 và AM = 9x.