Cho ∆ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G. Khẳng định nào sau đây đúng nhất?
A. BD = CE;
Đáp án đúng là: D
Ta xét từng đáp án:
Đáp án A:
Ta có ∆ABC cân tại A nên AB = AC.
Mà AB = 2AE (E là trung điểm AB) và AC = 2AD (D là trung điểm AC).
Suy ra 2AE = 2AD hay AE = AD.
Xét ∆ADB và ∆AEC, có:
AB = AC (∆ABC cân tại A).
AE = AD (chứng minh trên).
là góc chung.
Do đó ∆ADB = ∆AEC (c.g.c).
Suy ra BD = CE (cặp cạnh tương ứng).
Do đó đáp án A đúng.
Đáp án B:
Ta có G là trọng tâm của ∆ABC nên và .
Mà BD = CE (chứng minh trên).
Suy ra .
Do đó BG = CG.
Vậy ∆GBC cân tại G.
Do đó đáp án B đúng.
Đáp án C:
Vì G là trọng tâm tam giác ABC nên:
Do đó .
Mặt khác: BG + CG > BC (bất đẳng thức trong tam giác GCB).
Suy ra (điều phải chứng minh).
Do đó đáp án C đúng.
Vậy ta chọn đáp án D.
Cho ∆ABC cân tại A, có AM là đường trung tuyến. Khẳng định nào sau đây sai?
Cho ∆ABC có đường trung tuyến AD. Trên đoạn thẳng AD lấy hai điểm E, G sao cho AG = GE = ED. Trọng tâm của ∆ABC là điểm:
Cho ∆ABC có hai đường trung tuyến BE và CF cắt nhau tại G. Biết BE = CF. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC có ba đường trung tuyến AX, BY, CZ cắt nhau tại G. Biết GA = GB = GC. Hãy so sánh GX, GY và GZ.
Cho ∆ABC. Trên cạnh BC lấy điểm G sao cho BG = 2GC. Lấy điểm D sao cho C là trung điểm của AD. Gọi E là trung điểm BD. Khẳng định nào sau đây sai?
Cho ∆ABC, D là trung điểm của AC. Trên cạnh BD lấy điểm E sao cho BE = 2ED. Lấy điểm F thuộc tia đối của tia DE sao cho BF = 2BE. Gọi K là trung điểm của CF và G là giao điểm của EK với AC. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC có hai đường trung tuyến BM, CN cắt nhau tại G.
So sánh tổng BM + CN và .
Cho ∆ABC có AD, BE, CF là ba đường trung tuyến và trọng tâm G. Đẳng thức nào sau đây đúng?
Cho ∆ABC có G là trọng tâm như hình bên.
Tìm x, biết AG = 4x + 6 và AM = 9x.