Cho ∆ABC. Trên cạnh BC lấy điểm G sao cho BG = 2GC. Lấy điểm D sao cho C là trung điểm của AD. Gọi E là trung điểm BD. Khẳng định nào sau đây sai?
A. G là trọng tâm của ∆ABD;
Đáp án đúng là: B
Ta xét từng đáp án:
Đáp án A:
Ta có GB = 2GC.
Suy ra GB = 2(BC – BG).
Do đó GB = 2BC – 2GB.
Khi đó 3GB = 2BC.
Vậy .
∆ABD có C là trung điểm của AD.
Suy ra BC là đường trung tuyến của ∆ABD.
Mà G ∈ BC và .
Nên G là trọng tâm của ∆ABD.
Do đó đáp án A đúng.
Đáp án B:
Ta có AE là đường trung tuyến của ∆ABD.
Do đó G ∈ AE và .
Suy ra G không là trung điểm của AE.
Do đó đáp án B sai.
Đến đây ta có thể chọn đáp án B.
Đáp án C:
Ở đáp án B, ta đã chứng minh được G ∈ AE.
Nên ba điểm A, G, E thẳng hàng.
Do đó đáp án C đúng.
Đáp án D:
Ta có G là trọng tâm ∆ABD (chứng minh trên).
Suy ra DG là đường trung tuyến của ∆ABD.
Khi đó DG đi qua trung điểm của AB.
Do đó đáp án D đúng.
Vậy ta chọn đáp án B.
Cho ∆ABC cân tại A, có AM là đường trung tuyến. Khẳng định nào sau đây sai?
Cho ∆ABC có đường trung tuyến AD. Trên đoạn thẳng AD lấy hai điểm E, G sao cho AG = GE = ED. Trọng tâm của ∆ABC là điểm:
Cho ∆ABC có hai đường trung tuyến BE và CF cắt nhau tại G. Biết BE = CF. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC có ba đường trung tuyến AX, BY, CZ cắt nhau tại G. Biết GA = GB = GC. Hãy so sánh GX, GY và GZ.
Cho ∆ABC, D là trung điểm của AC. Trên cạnh BD lấy điểm E sao cho BE = 2ED. Lấy điểm F thuộc tia đối của tia DE sao cho BF = 2BE. Gọi K là trung điểm của CF và G là giao điểm của EK với AC. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC có hai đường trung tuyến BM, CN cắt nhau tại G.
So sánh tổng BM + CN và .
Cho ∆ABC có AD, BE, CF là ba đường trung tuyến và trọng tâm G. Đẳng thức nào sau đây đúng?
Cho ∆ABC cân tại A có hai đường trung tuyến BD và CE cắt nhau tại G. Khẳng định nào sau đây đúng nhất?
Cho ∆ABC có G là trọng tâm như hình bên.
Tìm x, biết AG = 4x + 6 và AM = 9x.