Cho hai đoạn thẳng AB và CD cắt nhau tại E. Các tia phân giác cắt nhau ở K. Chứng minh: .
* Tìm cách giải. Chúng ta nhận thấy là góc của tam giác BKG; CKH nên cần phải ghép vào hai tam giác ấy. Khai thác yêu cầu của bài toán (liên quan tới góc ) đồng thời để vận dụng yếu tố tia phân giác của giả thiết, chúng ta cần xét các cặp tam giác và cặp tam giác .
* Trình bày lời giải.
Gọi G là giao điểm CK và AE và H là giao điểm BK và DE.
Xét và có:
(đối đỉnh)
Xét và có:
(đối đỉnh)
Từ (1) và (2), kết hợp với ;
.
Cho tam giác ABC có , . Hai tia phân giác của góc B và C cắt nhau tại I. Vẽ tia phân giác ngoài tại đỉnh B cắt tia CI tại D. Chứng minh rằng .
Cho tam giác ABC. Tia phân giác của góc A cắt cạnh BC tại D. Biết .
a) Tính .
Cho tam giác ABC có . Tia phân giác góc A cắt BC tại D. Tính số đó góc ADC? Góc ADB?
Cho tam giác ABC vuông góc tại A. Tia phân giác của cắt AB tại D.
a) Chứng minh rằng góc BDC là góc tù.
Cho hình vẽ bên, biết rằng BD và CE là các tia phân giác của góc B, góc C.
a) Nếu , tính .
Các góc ngoài đỉnh A, B, C tỉ lệ với 2; 3; 4. Tính tỉ lệ ba góc trong của tam giác đó.
Cho tam giác ABC, O là điểm nằm trong tam giác.
a) Chứng minh rằng .Chứng minh với mỗi tam giác bao giờ cũng tồn tại một góc ngoài không lớn hơn .
b) Gọi E là giao điểm của đường thẳng AB với tia phân giác của góc ngoài tại đỉnh C. Tính góc AEC?
b) Đường thẳng chứa tia phân giác góc ngoài ở đỉnh A của tam giác ABC cắt đường thẳng BC tại E. Chứng minh rằng .