IMG-LOGO

Câu hỏi:

02/07/2024 143

Giải các phương trình sau:

a) 3(x – 5) + 2(x + 7) = x + 11.

b) x2 – 4 + 3x(x + 2) = 0.

c) x2 + 3x – 18 = 0.

d) 2x3x+2+x53x-10x2x6=2

Trả lời:

verified Giải bởi qa.haylamdo.com

a) 3(x – 5) + 2(x + 7) = x + 11

Û 3x 15 + 2x + 14 = x + 11

Û 5x 1 = x + 11

Û 5x x = 11 + 1

Û 4x = 12

Û x = 3

Vậy tập nghiệm của phương trình là S = {3}.

b) x2 – 4 + 3x(x + 2) = 0

Û (x – 2). (x + 2) + 3x(x + 2) = 0

Û (x + 2). [(x – 2) + 3x] = 0

Û (x + 2). (4x – 2) = 0

x+2=04x2=0x=2x=12

Vậy tập nghiệm của phương trình là S=2;  12 .

c) x2 + 3x – 18 = 0

Û x2 – 3x + 6x – 18 = 0

Û (x2 – 3x) + (6x – 18) = 0

Û x (x – 3) + 6(x – 3) = 0

Û (x – 3)(x + 6) = 0

x3=0x+6=0x=3x=6

Vậy tập nghiệm của phương trình là S = {– 6; 3}.

d) 2x3x+2+x53x-10x2x6=2

ĐKXĐ: x+203x0x2x60x+203x0(x+2)(x3)0x2x3

Khi đó phương trình đã cho trở thành:

2x3x+2-x5x3-10(x+2)(x3)=22x3x3x+2x3+x51x+23x1x+2-10x+2x3=2.x+2x3x+2x32x3x3x+2x3+x2x5x3x+2-10x+2x3=2.x+2x3x+2x3

=> (x – 3)(2x – 3) + (x – 5)(–2 – x) – 10 = 2(x + 2)(x – 3)

Û 2x2 – 9x + 9 – x2 + 10 + 3x – 10 = 2(x2 – x – 6)

Û x2 – 6x + 9 = 2x2 – 2x – 12

Û 2x2x2 – 2x + 6x – 12 – 9 = 0

Û x2 + 4x – 21 = 0

Û x2 + 7x – 3x – 21 = 0

Û (x2 + 7x) – (3x + 21) = 0

Û x(x + 7) – 3(x + 7) = 0

Û (x + 7)(x – 3) = 0

x7=0x3=0x=7x=3

Vậy tập nghiệm của phương trình là S = {– 7; 3}.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giải bài toán bằng cách lập phương trình

Trong đợt dịch Covid tháng 2 – 2021, một siêu thị đã thu mua rau giúp nông dân tỉnh Hải Dương để bán cho người tiêu dùng. Lúc đầu siêu thị dự định bán hết khối lượng rau đó trong vòng 18 ngày. Nhưng thực tế, số lượng người đến mua rau nhiều hơn dự định, vì vậy mỗi ngày siêu thị bán vượt mức 120 kg và đã bán hết khối lượng rau đó sớm hơn dự định 3 ngày. Tính khối lượng rau mà siêu thị đã thu mua.

Xem đáp án » 19/10/2022 182

Câu 2:

Cho phương trình ẩn x (với m là tham số)

m2x + 4m – 3 = m2 + x (1)

a) Giải phương trình với m = 2.

b) Tìm các giá trị của m để phương trình (1) có nghiệm duy nhất.

c) Tìm các giá trị nguyên của m để phương trình (1) có nghiệm duy nhất là số nguyên.

Xem đáp án » 19/10/2022 142

Câu 3:

Cho tam giác ABC có ba góc nhọn, các đường cao BD và CE cắt nhau ở H.

a) Chứng minh DABD  DACE.

b) Chứng minh CH. CE = CD. CA.

c) Kẻ EK ^ AC tại K; DI ^ EC tại I. Chứng minh AH // IK.

d) Chứng minh SEIK SABC.

Xem đáp án » 19/10/2022 124

Câu 4:

Cho hai số thực khác nhau a, b thỏa mãn: 1a2+1+1b2+1=21+ab

Tính giá trị của biểu thức: M = 1a2021+1+1b2021+1

Xem đáp án » 19/10/2022 111