Cho a + b = 1. Tính giá trị của các biểu thức sau:
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b).
Ta có: a + b = 1
M = a3 + b3 + 3ab(a2 + b2) + 6a2b2(a + b)
= (a + b)3 - 3ab(a + b) + 3ab[(a + b)2 - 2ab] + 6a2 b2 (a + b)
= 1 - 3ab + 3ab(1 - 2ab) + 6a2 b2
= 1 - 3ab + 3ab - 6a2 b2 + 6a2 b2
= 1
Cho tam giác ABC vuông tại A (AB < AC).Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N.
a) Chứng minh tứ giác AMIN là hình chữ nhật.
b) Gọi D là điểm đối xứng của I qua N. Chứng minh tứ giác ACID là hình thoi.
c) Cho AC = 20cm, BC = 25cm.Tính diện tích ΔABC
d) Đường thẳng BN cắt cạnh DC tại K. Chứng minh:
Cho biểu thức
a) Tìm điều kiện của x để biểu thức A xác định.
b) Rút gọn A
c) Tính giá trị của A khi x= -1
Cho tứ giác MNPQ. Gọi E, F , G, H lần lượt là trung điểm các cạnh MN, NP, PQ, QM. Tứ giác EFGH là hình thoi nếu 2 đường chéo MP, NQ của tứ giác MNPQ:
Độ dài 2 đường chéo của hình thoi lần lượt là 6 cm và 4 cm. Độ dài cạnh của hình thoi là: