Vì ;
nên
Vậy .
Một đường thẳng đi qua đỉnh A của hình bình hành ABCD cắt BD, BC, DC theo thứ tự ở E, K, G. Chứng minh rằng: Khi đường thẳng thay đổi vị trí nhưng vẫn đi qua A thì tích BK.DG có giá trị không thay đổi.
Cho hình thang ABCD có . Qua giao điểm O của hai đường chéo, kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự ở E và G. Chứng minh rằng .
Cho hình thang ABCD ( ). Điểm E thuộc cạnh AD, điểm F thuộc cạnh BC sao cho . Gọi M, N theo thứ tự là giao điểm của EF với BD, AC.
Chứng minh rằng EM=NF.
Một đường thẳng đi qua đỉnh A của hình bình hành ABCD cắt BD, BC, DC theo thứ tự ở E, K, G. Chứng minh rằng: