A. 2;
B. 6;
C. 5;
Đáp án đúng là: D
Xét hàm số y = x4 + 2ax2 + 8x trên ℝ.
Ta có: f '(x) = 4x3 + 4ax + 8 (*)
f '(x) = 0 Û 4x3 + 4ax + 8 = 0 (Do x = 0 không thỏa mãn nên x ¹ 0)
Xét hàm số: trên ℝ \ {0}
Bảng biến thiên của hàm số g (x):
Dễ thấy phương trình f (x) = 0 có ít nhất hai nghiệm phân biệt, trong đó có ít nhất một nghiệm đơn x = 0 nên yêu cầu bài toán
Û Hàm số f (x) có đúng một điểm cực trị
Û Phương trình a = g (x) có một nghiệm đơn duy nhất Û a ³ -3.
Do a nguyên âm nên a Î {-3; -2; -1}.
Vậy có 3 giá trị nguyên âm của tham số a thỏa mãn yêu cầu bài toán
Cho hình nón có góc ở đỉnh bằng 120° và chiều cao bằng 1. Gọi (S) là mặt cầu đi qua đỉnh và chứa đường tròn đáy của hình nón đã cho. Diện tích của (S) bằng
Cho hàm số f (x) = mx4 + 2(m - 1)x2 với m là tham số thực. Nếu thì bằng
Trên mặt phẳng tọa độ, điểm biểu diễn số phức z = 2 - 7i có tọa độ là
Trong không gian Oxyz, cho điểm A(2; 1; -1). Gọi (P) là mặt phẳng chứa trục Oy sao cho khoảng cách từ A đến (P) là lớn nhất. Phương trình của (P) là:
Cho hình hộp chữ nhật ABCD.A'B'C'D' có AB = a, BC = 2a và AA' = 3a (tham khảo hình bên). Khoảng cách giữa hai đường thẳng BD và A'C' bằng
Có bao nhiêu số nguyên thuộc tập xác định của hàm số y = log [(6 - x)(x + 2)]?
Biết F (x) và G (x) là hai nguyên hàm của hàm số f (x) trên ℝ và . Gọi S là diện tích hình phẳng giới hạn bỡi các đường y = F (x), y = G (x), x = 0 và x = 5. Khi S = 20 thì a bằng?
Chọn ngẫu nhiên một số từ tập hợp các số tự nhiên thuộc đoạn [40; 60]. Xác suất để chọn được số có chữ số hàng đơn vị lớn hơn chữ số hàng chục bằng
Cho hàm số bậc bốn y = f (x). Biết rằng hàm số g (x) = ln f (x) có bảng biến thiên như sau:
Diện tích hình phẳng giới hạn bởi các đường y = f '(x) và y = g '(x) thuộc khoảng nào dưới đây?