Cho tam giác ABC cân tại A có AM là đường trung tuyến. Điểm D đối xứng với điểm A qua M. Hỏi tứ giác ABDC là hình gì?
A. Hình bình hành
B. Hình chữ nhật
C. Hình thoi
D. Hình thang cân
Do tam giác ABC cân tại A có AM là đường trung tuyến nên đồng thời là đường cao:
AM ⊥ BC và M là trung điểm của BC.
Do D đối xứng vơi A qua M nên M là trung điểm của AD.
Tứ giác ABDC có hai đường chéo cắt nhau tại trung điểm mỗi đường nên là hình bình hành.
Lại có: AD ⊥ BC nên tứ giác ABDC là hình thoi.
Chọn đáp án C
Cho hình bình hành ABCD có I là giao điểm hai đường chéo. Biết rằng AC = 6cm và BD = 8cm và AD = 5cm. Tìm khẳng định sai ?
Cho tam giác ABC , gọi M, N và P lần lượt là trung điểm của AC; AB và BC. biết AB = BC. Hỏi tứ giác NMPB là hình gì?
Cho hình thoi ABCD có O là giao điểm hai đường chéo, biết AC = 16cm và OB = 6cm. Tính CD?
Hai đường chéo của hình thoi có độ dài lần lượt là 8cm và 10cm. Độ dài cạnh của hình thoi đó là ?