Tứ giác ABCD có AB = 9cm, BC = 20cm, CD = 25cm, AD = 12cm, BD = 15cm. Chọn câu sai:
A. ΔABD đồng dạng ΔBDC
B. ABCD là hình thang
C. ABCD là hình thang vuông
D. ABCD là hình thang cân
Ta có: (vì)
Nên ΔABD ~ ΔBDC (c - c - c)
ΔABD ~ ΔBDC nên .
Mà hai góc này ở vị trí so le trong nên AB // CD.
Vậy ABCD là hình thang.
Lại có nên ΔABD vuông tại A. Do đó ABCD là hình thang vuông
Vậy A, B, C đều đúng, D sai
Đáp án: D
Cho tam giác ΔABC đồng dạng ΔEDC như hình vẽ, tỉ số độ dài của x và y là:
Hai tam giác nào không đồng dạng khi biết độ dài các cạnh của hai tam giác lần lượt là:
Cho ΔABC đồng dạng với ΔMNP. Biết AB = 2cm, BC = 3cm, MN = 6cm, MP = 6cm. Hãy chọn khẳng định sai:
Tứ giác ABCD có AB = 8cm, BC = 15cm, CD = 18cm, AD = 10cm, BD = 12cm. Chọn câu đúng nhất:
ΔABC ~ ΔDEF theo tỉ số , ΔMNP ~ ΔDEF theo tỉ số . ΔABC ~ ΔMNP theo tỉ số nào?
Cho ΔABC đồng dạng với ΔMNP. Biết AB = 5cm, BC = 6cm, MN = 10cm, MP = 5cm. Hãy chọn câu đúng:
Cho tam giác ΔABC đồng dạng ΔEDC như hình vẽ, tỉ số độ dài của x và y là:
ΔDEF ~ ΔABC theo tỉ số , ΔMNP ~ ΔDEF theo tỉ số . ΔABC ~ ΔMNP theo tỉ số nào?
Cho ΔABC ~ ΔIKH. Có bao nhiêu khẳng định đúng trong các khẳng định sau:
(I)
(II)
(III)