Cho phương trình (m2 – 3m + 2)x = m – 2, với m là tham số. Tìm m để phương trình vô số nghiệm.
A. m = 1
B. m = 2
C. m = 0
D. m {1; 2}
(m2 – 3m + 2)x = m – 2 (*)
Xét m2 – 3m + 2 = 0 m2 – m – 2m + 2 = 0
m(m – 1) – 2(m – 1) = 0
(m – 1)(m – 2) = 0
+ Nếu m = 1 (*) 0x = 1. Điều này vô lí. Suy ra phương trình (*) vô nghiệm.
+ Nếu m = 2 (*) 0x = 0 điều này đúng với mọi x R.
Vậy với m = 2 thì phương trình có vô số nghiệm
Đáp án cần chọn là: B
Kết luận nào sau đây là đúng nhất khi nói về nghiệm x0 của phương trình
Số nguyên dương nhỏ nhất của m để phương trình (3m – 3)x + m = 3m2 + 1 có nghiệm duy nhất là:
Kết luận nào sau đây là đúng nhất khi nói về nghiệm x0 của phương trình
Cho phương trình: (-m2 – m + 2)x = m + 2, với m là tham số. Giá trị của m để phương trình vô số nghiệm là:
Gọi x1 là nghiệm của phương trình x3 + 2(x – 1)2 – 2(x – 1)(x + 1) = x3 + x – 4 – (x – 4) và x2 là nghiệm của phương trình .
Tính x1.x2
Gọi x1 là nghiệm của phương trình (x + 1)3 – 1 = 3 – 5x + 3x2 + x3 và x2 là nghiệm của phương trình 2(x – 1)2 – 2x2 + x – 3 = 0. Giá trị S = x1 + x2 là:
Tìm điều kiện của m để phương trình (3m – 4)x + m = 3m2 + 1 có nghiệm duy nhất.